germacrone and elemene

germacrone has been researched along with elemene* in 4 studies

Reviews

1 review(s) available for germacrone and elemene

ArticleYear
Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric.
    Molecular nutrition & food research, 2013, Volume: 57, Issue:9

    Turmeric, a dried powder derived from the rhizome of Curcuma longa, has been used for centuries in certain parts of the world and has been linked to numerous biological activities including antioxidant, anti-inflammatory, anticancer, antigrowth, anti-arthritic, anti-atherosclerotic, antidepressant, anti-aging, antidiabetic, antimicrobial, wound healing, and memory-enhancing activities. One component of turmeric is curcumin, which has been extensively studied, as indicated by more than 5600 citations, most of which have appeared within the past decade. Recent research has identified numerous chemical entities from turmeric other than curcumin. It is unclear whether all of the activities ascribed to turmeric are due to curcumin or whether other compounds in turmeric can manifest these activities uniquely, additively, or synergistically with curcumin. However, studies have indicated that turmeric oil, present in turmeric, can enhance the bioavailability of curcumin. Studies over the past decade have indicated that curcumin-free turmeric (CFT) components possess numerous biological activities including anti-inflammatory, anticancer, and antidiabetic activities. Elemene derived from turmeric is approved in China for the treatment of cancer. The current review focuses on the anticancer and anti-inflammatory activities exhibited by CFT and by some individual components of turmeric, including turmerin, turmerone, elemene, furanodiene, curdione, bisacurone, cyclocurcumin, calebin A, and germacrone.

    Topics: Animals; Anti-Inflammatory Agents; Antineoplastic Agents; Antioxidants; Clinical Trials as Topic; Curcuma; Curcumin; Cyclohexanols; Disease Models, Animal; Furans; Heterocyclic Compounds, 2-Ring; Humans; Hypoglycemic Agents; Inflammation; Neoplasms; Sesquiterpenes; Sesquiterpenes, Germacrane

2013

Other Studies

3 other study(ies) available for germacrone and elemene

ArticleYear
Inhibition effect of Zedoary turmeric oil on Listeria monocytogenes and Staphylococcus aureus growth and exotoxin proteins production.
    Journal of medical microbiology, 2019, Volume: 68, Issue:4

    Zedoary turmeric oil (ZTO), the steam extract of Curcuma zedoaria Rosc was researched for its chemical composition, antibacterial activity, and mechanism for countering two major food-borne pathogenic species, Listeria monocytogenes and Staphylococcus aureus.. Gas chromatography-mass spectrometry (GC-MS) was used to analyse and characterize the chemical composition of ZTO. Its MICs for the two bacterial species and growth curves were measured. Western blot and real-time reverse-transcription (RT)-PCR assays were utilized to elaborate the mechanism of the antibacterial effect of ZTO by examining the expression levels of virulence-related extracellular proteins. ELISA was used to explore the biological relevance.. Overall, L. monocytogenes and S. aureus were comparably susceptible to ZTO. These data demonstrated that ZTO's antimicrobial property was mediated by the repression of the production of virulence factors involved in L. monocytogenes and S. aureus pathogenesis, a finding that can potentially further progress in the development of new anti-virulence drugs.

    Topics: Animals; Anti-Bacterial Agents; Curcuma; Exotoxins; Listeria monocytogenes; Mice; Microbial Sensitivity Tests; Oils, Volatile; Plant Extracts; Plant Oils; RAW 264.7 Cells; Sesquiterpenes; Sesquiterpenes, Germacrane; Staphylococcus aureus; Steam

2019
Chemical Composition and Characteristic Odor Compounds in Essential Oil from Alismatis Rhizoma (Tubers of Alisma orientale).
    Journal of oleo science, 2016, Volume: 65, Issue:1

    Chemical composition and potent odorants that contribute to the characteristic odor of essential oil from Alismatis Rhizoma (tubers of Alisma orientale) were investigated by gas chromatography-mass spectrometry (GC-MS), GC-olfactometry (GC-O), aroma extract dilution analysis (AEDA) and relative flavor activity (RFA) methods. Fifty components, representing 94.5% of the total oil, were identified. In this study, we newly identified thirty-nine compounds in the oil from tubers of A. orientale. The major constituents of the essential oil were khusinol (36.2%), δ-elemene (12.4%), germacron (4.1%), alismol (3.8%), β-elemene (3.1%), and α-bisabolol (1.9%). Through sensory analysis, sixteen aroma-active compounds were detected and the key contributing aroma-active compounds were δ-elemene (woody, flavor dilution (FD)-factor = 4, RFA = 0.3) β-elemene (spicy, FD = 5, RFA = 0.7), spathulenol (green, FD = 5, RFA = 1.0), γ-eudesmol (woody, FD = 6, RFA = 1.5), and γ-cadinol (woody, FD = 5, RFA = 1.0). These compounds are thought to contribute to the odor from tubers of A. orientale. These results imply that the essential oil from the tubers of A. orientale deserve further investigations in the phytochemical and medicinal fields.

    Topics: Alisma; Gas Chromatography-Mass Spectrometry; Indicator Dilution Techniques; Monocyclic Sesquiterpenes; Odorants; Oils, Volatile; Olfactometry; Plant Stems; Sesquiterpenes; Sesquiterpenes, Germacrane

2016
Identification and quantitation of eleven sesquiterpenes in three species of Curcuma rhizomes by pressurized liquid extraction and gas chromatography-mass spectrometry.
    Journal of pharmaceutical and biomedical analysis, 2005, Sep-15, Volume: 39, Issue:3-4

    In this paper, GC-MS and pressurized liquid extraction (PLE) was developed for identification and quantitative determination/estimation 11 sesquiterpenes including germacrene D, curzerene, gamma-elemene, furanodienone, curcumol, isocurcumenol, furanodiene, germacrone, curdione, curcumenol and neocurdione in Ezhu which are derived from three species of Curcuma, i.e., Curcuma phaeocaulis, Curcuma wenyujin and Curcuma kwangsiensis by using an analogue as standard. The results showed the methodology could quantitatively compare the quality of three species of Curcuma. The contents of investigated sesquiterpenes in three species of Curcuma were high variant. Hierarchical clustering analysis based on characteristics of 11 identified peaks in GC profiles showed that 18 samples were divided into two main clusters, C. phaeocaulis and C. wenyujin, respectively. C. kwangsiensis showed the characters closed to C. phaeocaulis or C. wenyujin based on its location. Five components such as furanodienone, germacrone, curdione, curcumenol and neocurdione were optimized as markers for quality control of Ezhu.

    Topics: Chemistry, Pharmaceutical; Chromatography; Chromatography, Ion Exchange; Chromatography, Liquid; Curcuma; Drug Industry; Furans; Gas Chromatography-Mass Spectrometry; Heterocyclic Compounds, 2-Ring; Magnetic Resonance Spectroscopy; Models, Chemical; Phylogeny; Quality Control; Sesquiterpenes; Sesquiterpenes, Germacrane

2005