germacrene-a has been researched along with farnesyl-pyrophosphate* in 8 studies
8 other study(ies) available for germacrene-a and farnesyl-pyrophosphate
Article | Year |
---|---|
Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene.
Beta-elemene, a sesquiterpene and the major component of the medicinal herb Curcuma wenyujin, has antitumor activity against various types of cancer and could potentially serve as a potent antineoplastic drug. However, its current mode of production through extraction from plants has been inefficient and suffers from limited natural resources. Here, we engineered a yeast cell factory for the sustainable production of germacrene A, which can be transformed to beta-elemene by a one-step chemical reaction in vitro. Two heterologous germacrene A synthases (GASs) converting farnesyl pyrophosphate (FPP) to germacrene A were evaluated in yeast for their ability to produce germacrene A. Thereafter, several metabolic engineering strategies were used to improve the production level. Overexpression of truncated 3-hydroxyl-3-methylglutaryl-CoA reductase and fusion of FPP synthase with GAS, led to a sixfold increase in germacrene A production in shake-flask culture. Finally, 190.7 mg/l of germacrene A was achieved. The results reported in this study represent the highest titer of germacrene A reported to date. These results provide a basis for creating an efficient route for further industrial application re-placing the traditional extraction of beta-elemene from plant sources. Topics: Batch Cell Culture Techniques; Culture Media; Gene Expression Regulation, Fungal; Geranyltranstransferase; HMGB1 Protein; Metabolic Engineering; Plasmids; Polyisoprenyl Phosphates; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Sesquiterpenes; Sesquiterpenes, Germacrane | 2017 |
Expression, purification and activity assay of a patchoulol synthase cDNA variant fused to thioredoxin in Escherichia coli.
Probing a cDNA library extracted from Pogostemon cablin (Indian Patchouli) with gene specific primers, a variant of patchoulol synthase PTS (GenBank acc. No.: AY508730) was amplified, cloned, and sequenced. The amino acid sequence deduced from the cloned cDNA exhibited a sequence variation of 3.4% compared to the annotated sequence. The enzyme variant tended to form inclusion bodies when expressed in Escherichia coli. The coding sequence was fused to the T7-tag, His-tag and to thioredoxin. Constructs were expressed in three different E. coli expression strains, with several strain/construct combinations yielding soluble enzyme. By fusion to thioredoxin and careful codon optimization of the eukaryotic sequence, soluble expression could be improved on average by 42% in comparison to an unoptimized, His-tagged construct. The thioredoxin-fused protein was successfully purified using a one-step Co(2+)-IMAC purification procedure. Bioactivity assays using prepared farnesyl diphosphate (FDP) in milliliter-scale batch reactions, showed activity of the fused enzyme even with thioredoxin attached. The product spectrum of the enzyme was compared to patchouli oil standards by GC-MS and the main products were identified. Interestingly, the variant showed a shift in product spectrum with germacrene A being the most abundant product instead of patchouli alcohol. In silico structural modeling shows a possible chemical and structural change in the active site of the enzyme, which might be responsible for the shift in product composition. Topics: Amino Acid Sequence; Cloning, Molecular; DNA, Complementary; Escherichia coli; Isomerases; Lamiaceae; Models, Molecular; Molecular Sequence Data; Polyisoprenyl Phosphates; Recombinant Fusion Proteins; Sesquiterpenes; Sesquiterpenes, Germacrane; Thioredoxins | 2014 |
Evolutionary and mechanistic insights from the reconstruction of α-humulene synthases from a modern (+)-germacrene A synthase.
Germacrene A synthase (GAS) from Solidago canadensis catalyzes the conversion of farnesyl diphosphate (FDP) to the plant sesquiterpene (+)-germacrene A. After diphosphate expulsion, farnesyl cation reacts with the distal 10,11-double bond to afford germacrene A (>96%) and <2% α-humulene, which arises from 1,11-cyclization of FDP. The origin of the 1,11-activity of GAS was investigated by amino acid sequence alignments of 1,10- and 1,11-synthases and comparisons of X-ray crystal structures with the homology model of GAS; a triad [Thr 401-Gly 402-Gly 403] that might be responsible for the predominant 1,10-cyclization activity of GAS was identified. Replacement of Gly 402 with residues of increasing size led to a progressive increase of 1,11-cyclization. The catalytic robustness of these 1,10- /1,11-GAS variants point to Gly 402 as a functional switch of evolutionary significance and suggests that enzymes with strict functionalities have evolved from less specific ancestors through a small number of substitutions. Similar results were obtained with germacrene D synthase (GDS) upon replacement of the homologous active-site residue Gly 404: GDS-G404V generated approximately 20% bicyclogermacrene, a hydrocarbon with a cyclopropane ring that underlines the dual 1,10-/1,11-cyclization activity of this mutant. This suggests that the reaction pathways to germacrenes and humulenes might be connected through a bridged 1,10,11-carbocation intermediate or transition state that resembles bicyclogermacrene. Mechanistic studies using [1-(3)H1]-10-fluorofarnesyl diphosphate and deuterium-labeling experiments with [12,13-(2)H6]-FDP support a germacrene-humulene rearrangement linking 1,10- and 1,11-pathways. These results support the bioinformatics proposal that modern 1,10-synthases could have evolved from promiscuous 1,11-sesquiterpene synthases. Topics: Alkyl and Aryl Transferases; Biocatalysis; Computational Biology; Cyclization; Molecular Structure; Polyisoprenyl Phosphates; Sesquiterpenes; Sesquiterpenes, Germacrane; Solidago | 2014 |
6- and 14-Fluoro farnesyl diphosphate: mechanistic probes for the reaction catalysed by aristolochene synthase.
The catalytic mechanism of the enzyme aristolochene synthase from Penicillium roqueforti (PR-AS) has been probed with the farnesyl diphosphate analogues 6- and 14-fluoro farnesyl diphosphate (1a and 1c). Incubation of these analogues with PR-AS followed by analysis of the reaction products by GC-MS and NMR spectroscopy indicated that these synthetic FPP analogues were converted to the fluorinated germacrene A analogues 3b and 3c, respectively. In both cases the position of the fluorine atom prevented the formation of the eudesmane cation analogues 4b and 4c. These results highlight that germacrene A is an on-path reaction intermediate during PR-AS catalysis and shed light on the mechanism by which germacrene A is converted to eudesmane cation. They support the proposal that the role of PR-AS in the cyclisation is essentially passive in that it harnesses the inherent chemical reactivity present in the substrate by promoting the initial ionisation of farnesyl diphosphate and by acting as a productive template to steer the reaction through an effective series of cyclisations and rearrangements to (+)-aristolochene (7a). Topics: Catalysis; Cyclization; Fluorine; Gas Chromatography-Mass Spectrometry; Isomerases; Magnetic Resonance Spectroscopy; Molecular Probe Techniques; Penicillium; Polyisoprenyl Phosphates; Sesquiterpenes; Sesquiterpenes, Germacrane | 2009 |
Aristolochene synthase-catalyzed cyclization of 2-fluorofarnesyl-diphosphate to 2-fluorogermacrene A.
The mechanism of the conversion of (E,E)-farnesyl diphosphate (FPP, 1a) to aristolochene (6) catalyzed by aristolochene synthase from Penicillium roqueforti has been proposed to proceed through the neutral intermediate germacrene A (4a). However, much of the experimental evidence is also in agreement with a mechanism in which germacrene A is not an intermediate in the predominant mechanism that leads to the formation of aristolochene, but rather an off-pathway product that is formed in a side reaction. Hence, to elucidate the mechanism of FPP cyclisation the substrate analogue 2-fluoroFPP (1b) was synthesized, and upon incubation with aristolochene synthase was converted to a single pentane extractable product according to GC-MS analysis. On the basis of NMR analyses this product was identified as 2-fluorogermacrene A (4b). Variable temperature (1)H NMR spectroscopy indicated the existence of two conformers of 4b that were in slow exchange at -60 degrees C, while at 90 degrees C the two isomers gave rise to averaged NMR signals. In the major isomer (approximately 75%) the methyl groups on C3 and C7 were most likely in the down-down orientation as had been observed for other (E,E)-germacranes. This work suggests that after an initial concerted cyclisation of FPP to germacryl cation deprotonation leads to the formation of germacrene A, and provides compelling evidence that germacrene A is indeed an on-pathway product of catalysis by aristolochene synthase. Topics: Binding Sites; Catalysis; Cyclization; Gas Chromatography-Mass Spectrometry; Hydrocarbons, Fluorinated; Isomerases; Isomerism; Magnetic Resonance Spectroscopy; Models, Chemical; Penicillium; Polyisoprenyl Phosphates; Sesquiterpenes; Sesquiterpenes, Germacrane; Temperature | 2007 |
Interception of the enzymatic conversion of farnesyl diphosphate to 5-epi-aristolochene by using a fluoro substrate analogue: 1-fluorogermacrene A from (2E,6Z)-6-fluorofarnesyl diphosphate.
Tobacco 5-epi-aristolochene synthase (TEAS) catalyzes the Mg(II)-dependent cyclizations and rearrangements of (E,E)-farnesyl diphosphate (PP) to the bicyclic sesquiterpene hydrocarbon via a tightly bound (+)-germacrene A as a deprotonated intermediate. With the native enzyme, only a few percent of the putative germacrene A intermediate is released from the active site during the catalytic cycle. 6-Fluorofarnesyl PP was designed and synthesized with the aim of arresting the cyclization-rearrangement mechanism en route to 5-epi-aristolochene. Indeed, incubation of (2E,6Z)-6-fluorofarnesyl PP with recombinant TEAS afforded (-)-1-fluorogermacrene A as the sole product in 58% yield. Steady-state kinetic experiments with farnesyl PP and the 6-fluoro analogue showed that the overall catalytic efficiencies (k(cat)/K(m)) are essentially the same for both substrates. 1-Fluorogermacrene A was characterized by chromatographic properties (TLC, GC), MS, optical rotation, UV, IR and (1)H NMR data, and by heat-induced Cope rearrangement to (+)-1-fluoro-beta-elemene. (1)H NMR spectra at room temperature revealed that this (E,E)-configured fluorocyclodecadiene exists in solution as a 7:3 mixture of UU and UD conformers. 1-Fluorogermacrene A underwent trifluoroacetic acid-catalyzed cyclization to give three 1alpha-fluoroselinene isomers at a rate estimated to be about 1000 times slower than that of the similar cyclization of (+)-germacrene A to the parent selinenes. Topics: Alkyl and Aryl Transferases; Binding Sites; Catalysis; Chromatography; Cyclization; Hydrocarbons, Fluorinated; Kinetics; Models, Chemical; Nicotiana; Polyisoprenyl Phosphates; Sesquiterpenes; Sesquiterpenes, Germacrane; Spectrum Analysis; Stereoisomerism; Substrate Specificity | 2007 |
Dual role for phenylalanine 178 during catalysis by aristolochene synthase.
A mutant of aristolochene synthase, in which Phe 178 was replaced by Val, produced significant amounts of alpha-and beta-farnesene as well as alpha and beta-selinene and selina-4,11-diene, suggesting that Phe 178 is involved in the stabilisation of transition states preceding germacrene A and following eudesmane cation. Topics: Amino Acid Substitution; Catalysis; Cyclization; Isomerases; Mutagenesis, Site-Directed; Phenylalanine; Polyisoprenyl Phosphates; Sesquiterpenes; Sesquiterpenes, Germacrane | 2004 |
Terpenoid metabolism in wild-type and transgenic Arabidopsis plants.
Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants. Topics: Acyclic Monoterpenes; Alkyl and Aryl Transferases; Animals; Aphids; Arabidopsis; Chloroplasts; Cichorium intybus; Gene Expression Regulation, Plant; Glycosylation; Hydroxylation; Monoterpenes; Plant Proteins; Plants, Genetically Modified; Polyisoprenyl Phosphates; Sesquiterpenes; Sesquiterpenes, Germacrane; Terpenes; Volatilization | 2003 |