geranylgeranyl-pyrophosphate and pyrazolanthrone

geranylgeranyl-pyrophosphate has been researched along with pyrazolanthrone* in 2 studies

Other Studies

2 other study(ies) available for geranylgeranyl-pyrophosphate and pyrazolanthrone

ArticleYear
Phosphorylation of eIF2α attenuates statin-induced apoptosis by inhibiting the stabilization and translocation of p53 to the mitochondria.
    International journal of oncology, 2013, Volume: 42, Issue:3

    Statins are effective cholesterol-lowering drugs that exert pleiotropic effects, including cytotoxicity to cancer cells. We previously reported that simvastatin triggered the mitochondrial apoptotic pathway in MethA fibrosarcoma cells, which was accompanied by the translocation of stabilized p53 to the mitochondria. In this study, we investigated whether statins induce the endoplasmic reticulum (ER) stress response and the mechanisms by which this response is linked to the stabilization of p53 and its translocation to the mitochondria. Statins induced typical ER stress-related proteins, such as BiP/78 kDa glucose-regulated protein (Grp78) and CCAAT/enhancer-binding protein homologous protein (CHOP), as well as the phosphorylation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), eIF2α and JNK. The statin-induced phosphorylation of eIF2α and JNK was inhibited by supplementation with components of the mevalonate pathway, such as mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Salubrinal, an inhibitor of the dephosphorylation of eIF2α, suppressed the loss of mitochondrial membrane potential and the translocation of stabilized p53 and Bax to the mitochondria; however, SP600125, a JNK kinase inhibitor, did not exert this effect. Furthermore, the eIF2α knockdown sensitized cells to simvastatin-induced apoptosis and the overexpression of a non-phosphorylatable eIF2α-mutant [serine 51(Ser51)/alanine] enhanced the stabilization of p53 and its translocation to the mitochondria in response to simvastatin treatment. Taken together, these data indicate that eIF2α phosphorylation in the context of the ER stress response plays a role in cell survival by counteracting the p53-mediated mitochondrial apoptosis in response to statins.

    Topics: Animals; Anthracenes; Anticholesteremic Agents; Apoptosis; bcl-2-Associated X Protein; Cell Line, Tumor; Cell Survival; Cinnamates; eIF-2 Kinase; Endoplasmic Reticulum; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Eukaryotic Initiation Factor-2; Fibrosarcoma; Heat-Shock Proteins; Hydroxymethylglutaryl-CoA Reductase Inhibitors; JNK Mitogen-Activated Protein Kinases; Membrane Potential, Mitochondrial; Mevalonic Acid; Mice; Mitochondria; Phosphorylation; Polyisoprenyl Phosphates; Protein Transport; RNA Interference; RNA, Small Interfering; Sesquiterpenes; Signal Transduction; Simvastatin; Thiourea; Transcription Factor CHOP; Tumor Suppressor Protein p53

2013
Glucose-potentiated chemotaxis in human vascular smooth muscle is dependent on cross-talk between the PI3K and MAPK signaling pathways.
    Circulation research, 2004, Aug-20, Volume: 95, Issue:4

    Atheroma formation involves the movement of vascular smooth muscle cells (VSMC) into the subendothelial space. The aim of this study was to determine the involvement of PI3K and MAPK pathways and the importance of cross-talk between these pathways, in glucose-potentiated VSMC chemotaxis to serum factors. VSMC chemotaxis occurred in a serum gradient in 25 mmol/L glucose (but not in 5 mmol/L glucose) in association with increased phosphorylation (activation) of Akt and ERK1/2 in PI3K and MAPK pathways, respectively. Inhibitors of these pathways blocked chemotaxis, as did an mTOR inhibitor. VSMC expressed all class IA PI3K isoforms, but microinjection experiments demonstrated that only the p110beta isoform was involved in chemotaxis. ERK1/2 phosphorylation was reduced not only by MAPK pathway inhibitors but also by PI3K and mTOR inhibitors; when PI3K was inhibited, ERK phosphorylation could be induced by microinjected activated Akt, indicating important cross-talk between the PI3K and ERK1/2 pathways. Glucose-potentiated phosphorylation of molecules in the p38 and JNK MAPK pathways inhibited these pathways but did not affect chemotaxis. The statin, mevinolin, blocked chemotaxis through its effects on the MAPK pathway. Mevinolin-inhibited chemotaxis was restored by farnesylpyrophosphate but not by geranylgeranylpyrophosphate; in the absence of mevinolin, inhibition of farnesyltransferase reduced ERK phosphorylation and blocked chemotaxis, indicating a role for the Ras family of GTPases (MAPK pathway) under these conditions. In conclusion, glucose sensitizes VSMC to serum, inducing chemotaxis via pathways involving p110beta-PI3K, Akt, mTOR, and ERK1/2 MAPK. Cross-talk between the PI3K and MAPK pathways is necessary for VSMC chemotaxis under these conditions.

    Topics: Alkyl and Aryl Transferases; Androstadienes; Anthracenes; Antibodies, Monoclonal; Cells, Cultured; Chemotaxis; Chromones; Class I Phosphatidylinositol 3-Kinases; Farnesyltranstransferase; Flavonoids; Glucose; Humans; Imidazoles; Isoenzymes; JNK Mitogen-Activated Protein Kinases; Lovastatin; MAP Kinase Kinase 4; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinase Kinases; Morpholines; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; p38 Mitogen-Activated Protein Kinases; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Polyisoprenyl Phosphates; Protein Kinases; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Pyridines; ras Proteins; Sesquiterpenes; Sirolimus; TOR Serine-Threonine Kinases; Wortmannin

2004