geranylgeranyl-pyrophosphate has been researched along with miltiradiene* in 2 studies
2 other study(ies) available for geranylgeranyl-pyrophosphate and miltiradiene
Article | Year |
---|---|
Identification of geranylgeranyl diphosphate synthase genes from Tripterygium wilfordii.
We found triptolide synthesis is correlated with the expressions of TwGGPPS1 and TwGGPPS4 . This lays the foundation for future studies of biosynthetic pathways for triptolide and other diterpenoids in T. wilfordii. Tripterygium wilfordii is a traditional Chinese medical plant commonly used to treat rheumatoid arthritis. One of its main bioactive compounds is triptolide, which is identified as an abietane-type diterpenoid natural product. Geranylgeranyl diphosphate synthase (GGPPS) catalyses the synthesis of GGPP (geranylgeranyl diphosphate), the common precursor of diterpenes, and is therefore a crucial enzyme in diterpene biosynthesis. A previous study showed that GGPP could be catalyzed by copalyl diphosphate synthase and kaurene synthase like of Salvia miltiorrhiza (SmCPS, SmKSL) to miltiradiene, a key intermediate in tanshinone biosynthesis. In this paper, five new full-length cDNAs (TwGGPPS) encoding GGPP synthases were cloned from T. wilfordii. Sequence comparisons revealed that all six TwGGPPSs (including TwGGPPS2 cloned previously) exhibit similarities to GGPPSs of other plants. Subsequent functional complement assays demonstrated that TwGGPPS1, TwGGPPS4 and TwGGPPS5 can participate in miltiradiene biosynthesis in the recombinant E. coli. Correlation analysis of gene expressions and secondary metabolite accumulation indicated that TwGGPPS1 and TwGGPPS4 are likely involved in the biosynthesis of triptolide. These findings lay the foundation for future studies of the biosynthetic pathways for triptolide and other diterpenoids in T. wilfordii. Topics: Acetates; Amino Acid Sequence; Biosynthetic Pathways; Cloning, Molecular; Cyclopentanes; Diterpenes; Epoxy Compounds; Escherichia coli; Farnesyltranstransferase; Molecular Sequence Data; Oxylipins; Phenanthrenes; Phylogeny; Plant Growth Regulators; Plant Proteins; Polyisoprenyl Phosphates; Sequence Alignment; Tripterygium | 2015 |
Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae.
Metabolic engineering of microorganisms is an alternative and attractive route for production of valuable terpenoids that are usually extracted from plant sources. Tanshinones are the bioactive components of Salvia miltiorrhizha Bunge, which is a well-known traditional Chinese medicine widely used for treatment of many cardiovascular diseases. As a step toward microbial production of tanshinones, copalyl diphosphate (CPP) synthase, and normal CPP kaurene synthase-like genes, which convert the universal diterpenoid precursor geranylgeranyl diphosphate (GGPP) to miltiradiene (an important intermediate of the tanshinones synthetic pathway), was introduced into Saccharomyces cerevisiae, resulting in production of 4.2 mg/L miltiradiene. Improving supplies of isoprenoid precursors was then investigated for increasing miltiradiene production. Although over-expression of a truncated 3-hydroxyl-3-methylglutaryl-CoA reductase (tHMGR) and a mutated global regulatory factor (upc2.1) gene did improve supply of farnesyl diphosphate (FPP), production of miltiradiene was not increased while large amounts of squalene (78 mg/L) were accumulated. In contrast, miltiradiene production increased to 8.8 mg/L by improving supply of GGPP through over-expression of a fusion gene of FPP synthase (ERG20) and endogenous GGPP synthase (BTS1) together with a heterologous GGPP synthase from Sulfolobus acidocaldarius (SaGGPS). Auxotrophic markers in the episomal plasmids were then replaced by antibiotic markers, so that engineered yeast strains could use rich medium to obtain better cell growth while keeping plasmid stabilities. Over-expressing ERG20-BTS1 and SaGGPS genes increased miltiradiene production from 5.4 to 28.2 mg/L. Combinatorial over-expression of tHMGR-upc2.1 and ERG20-BTS1-SaGGPS genes had a synergetic effects on miltiradiene production, increasing titer to 61.8 mg/L. Finally, fed-batch fermentation was performed, and 488 mg/L miltiradiene was produced. The yeast strains engineered in this work provide a basis for creating an alternative way for production of tanshinones in place of extraction from plant sources. Topics: Culture Media; Diterpenes; Metabolic Engineering; Metabolic Networks and Pathways; Plasmids; Polyisoprenyl Phosphates; Saccharomyces cerevisiae; Sulfolobus acidocaldarius | 2012 |