geranylgeranyl-pyrophosphate has been researched along with methyl-jasmonate* in 4 studies
4 other study(ies) available for geranylgeranyl-pyrophosphate and methyl-jasmonate
Article | Year |
---|---|
Identification of geranylgeranyl diphosphate synthase genes from Tripterygium wilfordii.
We found triptolide synthesis is correlated with the expressions of TwGGPPS1 and TwGGPPS4 . This lays the foundation for future studies of biosynthetic pathways for triptolide and other diterpenoids in T. wilfordii. Tripterygium wilfordii is a traditional Chinese medical plant commonly used to treat rheumatoid arthritis. One of its main bioactive compounds is triptolide, which is identified as an abietane-type diterpenoid natural product. Geranylgeranyl diphosphate synthase (GGPPS) catalyses the synthesis of GGPP (geranylgeranyl diphosphate), the common precursor of diterpenes, and is therefore a crucial enzyme in diterpene biosynthesis. A previous study showed that GGPP could be catalyzed by copalyl diphosphate synthase and kaurene synthase like of Salvia miltiorrhiza (SmCPS, SmKSL) to miltiradiene, a key intermediate in tanshinone biosynthesis. In this paper, five new full-length cDNAs (TwGGPPS) encoding GGPP synthases were cloned from T. wilfordii. Sequence comparisons revealed that all six TwGGPPSs (including TwGGPPS2 cloned previously) exhibit similarities to GGPPSs of other plants. Subsequent functional complement assays demonstrated that TwGGPPS1, TwGGPPS4 and TwGGPPS5 can participate in miltiradiene biosynthesis in the recombinant E. coli. Correlation analysis of gene expressions and secondary metabolite accumulation indicated that TwGGPPS1 and TwGGPPS4 are likely involved in the biosynthesis of triptolide. These findings lay the foundation for future studies of the biosynthetic pathways for triptolide and other diterpenoids in T. wilfordii. Topics: Acetates; Amino Acid Sequence; Biosynthetic Pathways; Cloning, Molecular; Cyclopentanes; Diterpenes; Epoxy Compounds; Escherichia coli; Farnesyltranstransferase; Molecular Sequence Data; Oxylipins; Phenanthrenes; Phylogeny; Plant Growth Regulators; Plant Proteins; Polyisoprenyl Phosphates; Sequence Alignment; Tripterygium | 2015 |
Metabolic engineering of Nicotiana benthamiana for the increased production of taxadiene.
We report the production of taxadiene by transformation of N. benthamiana with a taxadiene synthase gene. The production was significantly increased by an elicitor treatment or metabolic pathway shunting. Paclitaxel (Taxol(®)) was first isolated from the bark of the pacific yew tree as an anticancer agent and has been used extensively to treat various types of cancer. Taxadiene, the first committed product of paclitaxel synthesis is cyclized from geranylgeranyl diphosphate (GGPP), and further complex hydroxylation and acylation processes of the unique taxane core skeleton produce paclitaxel. To accomplish de novo production of taxadiene, we transformed Nicotiana benthamiana with a taxadiene synthase (TS) gene. The introduced TS gene under the transcriptional control of the CaMV 35S promoter was constitutively expressed in N. benthamiana, and the de novo production of taxadiene was confirmed by mass spectroscopy profiling. Transformed N. benthamiana homozygous lines produced 11-27 μg taxadiene/g of dry weight. The highest taxadiene production line TSS-8 was further treated with an elicitor, methyl jasmonate, and metabolic pathway shunting by suppression of the phytoene synthase gene expression which resulted in accumulation of increased taxadiene accumulation by 1.4- or 1.9-fold, respectively. In summary, we report that the production of taxadiene in N. benthamiana was possible by the ectopic expression of the TS gene, and higher accumulation of taxadiene could be achieved by elicitor treatment or metabolic pathway shunting of the terpenoid pathway. Topics: Acetates; Alkenes; Antineoplastic Agents, Phytogenic; Bridged-Ring Compounds; Cyclopentanes; Diterpenes; Gene Silencing; Humans; Isomerases; Metabolic Engineering; Metabolic Networks and Pathways; Nicotiana; Oxylipins; Paclitaxel; Plant Growth Regulators; Polyisoprenyl Phosphates; Taxoids; Taxus | 2014 |
Transcriptional activation of a geranylgeranyl diphosphate synthase gene, GGPPS2, isolated from Scoparia dulcis by treatment with methyl jasmonate and yeast extract.
A cDNA clone, designated SdGGPPS2, was isolated from young seedlings of Scoparia dulcis. The putative amino acid sequence of the translate of the gene showed high homology with geranylgeranyl diphosphate synthase (GGPPS) from various plant sources, and the N-terminal residues exhibited the characteristics of chloroplast targeting sequence. An appreciable increase in the transcriptional level of SdGGPPS2 was observed by exposure of the leaf tissues of S. dulcis to methyl jasmonate, yeast extract or Ca(2+) ionophore A23187. In contrast, SdGGPPS1, a homologous GGPPS gene of the plant, showed no or only negligible change in the expression level upon treatment with these stimuli. The truncated protein heterologously expressed in Escherichia coli in which the putative targeting domain was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to liberate geranylgeranyl diphosphate. These results suggested that SdGGPPS2 plays physiological roles in methyl jasmonate and yeast extract-induced metabolism in the chloroplast of S. dulcis cells. Topics: Acetates; Amino Acid Sequence; Cyclopentanes; Farnesyltranstransferase; Gene Expression Regulation, Plant; Genes, Plant; Oxylipins; Polyisoprenyl Phosphates; Scoparia; Sequence Alignment; Sesquiterpenes; Transcriptional Activation; Yeasts | 2014 |
Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies).
Norway spruce (Picea abies) defends itself against herbivores and pathogens by formation of traumatic resin ducts filled with terpenoid-based oleoresin. An important group of enzymes in terpenoid biosynthesis are the short-chain isoprenyl diphosphate synthases which produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of monoterpenes, sesquiterpenes, and diterpene resin acids, respectively. After treatment with methyl jasmonate (MJ) we investigated the expression of all isoprenyl diphosphate synthase genes characterized to date from Norway spruce and correlated this with formation of traumatic resin ducts and terpene accumulation. Formation of traumatic resin ducts correlated with higher amounts of monoterpenes, sesquiterpenes and diterpene resin acids and an upregulation of isoprenyl diphosphate synthase genes producing geranyl diphosphate or geranylgeranyl diphosphate. Among defense hormones, jasmonate and jasmonate-isoleucine conjugate accumulated to higher levels in trees with extensive traumatic resin duct formation, whereas salicylate did not. Jasmonate and ethylene are likely to both be involved in formation of traumatic resin ducts based on elevated transcripts of genes encoding lipoxygenase and 1-aminocyclopropane-1-carboxylic acid oxidase associated with resin duct formation. Other genes involved in defense signalling in other systems, mitogen-activated protein kinase3 and nonexpressor of pathogenesis-related gene1, were also associated with traumatic resin duct formation. These responses were detected not only at the site of MJ treatment, but also systemically up to 60 cm above the site of treatment on the trunk. Topics: Acetates; Alkyl and Aryl Transferases; Cyclopentanes; Diphosphates; Diterpenes; Oxylipins; Picea; Plant Growth Regulators; Polyisoprenyl Phosphates; Sesquiterpenes; Terpenes | 2011 |