Page last updated: 2024-08-25

gentamicin c1a and amikacin

gentamicin c1a has been researched along with amikacin in 13 studies

Research

Studies (13)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's13 (100.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Almeida, MCS; Barreto, FS; Braz-Filho, R; Costa, JGM; da S Souza, LG; de Brito, ES; de Moraes, MO; Lemos, TLG; Ribeiro, PRV; Rodrigues, FFG; Silva, AMS; Silva, VLM1
Centárová, I; Cole, ST; Čonka, P; Hrabálek, A; Karabanovich, G; Klimešová, V; Mikušová, K; Němeček, J; Pávek, P; Pávková, I; Roh, J; Šarkan, M; Smutný, T; Stolaříková, J; Székely, R; Vávrová, K; Vejsová, M; Vocat, A; Zemanová, J1
Fernando, DM; Gorityala, BK; Goswami, S; Guchhait, G; Kumar, A; Schweizer, F; Zhanel, GG1
Barros R S, V; Das, I; Décout, JL; Désiré, J; El Khoury, M; Mingeot-Leclercq, MP; Sautrey, G; Zimmermann, L1
Carazo, A; Hrabálek, A; Karabanovich, G; Klimešová, V; Konečná, K; Němeček, J; Pávek, P; Pavliš, O; Roh, J; Stolaříková, J; Valášková, L; Vávrová, K1
Ashenden, S; Bender, A; Cokol, M; Karakoc, I; Kuru, N; Mason, DJ; Meral, S; Stott, I; Weinstein, ZB1
Domalaon, R; Gorityala, BK; Goswami, S; Idowu, T; Lyu, Y; Schweizer, F; Shan, A; Yang, X; Zhanel, GG1
Carazo, A; Hrabálek, A; Karabanovich, G; Klimešová, V; Němeček, J; Pávek, P; Pavliš, O; Roh, J; Stolaříková, J; Sychra, P; Valášková, L; Vávrová, K; Vlčková, H1
Briée, F; Décout, JL; Kempf, J; Mingeot-Leclercq, MP; Swain, J; Zimmermann, L1
Dou, X; Feng, X; He, S; Shan, A; Song, J; Wang, J; Yang, Y; Yang, Z1
Björkling, F; Bonke, G; Franzyk, H; Hansen, AM; Hogendorf, WFJ; Kongstad, KT; Nielsen, J; Nielsen, PE; Tomczak, M; Urbas, M; Zabicka, D1
Bera, S; Mondal, D1
Dušek, J; Hrabálek, A; Huszár, S; Jand'ourek, O; Karabanovich, G; Klimešová, V; Kočová Vlčková, H; Konečná, K; Konyariková, Z; Korábečný, J; Korduláková, J; Kučera, T; Mikušová, K; Pávek, P; Pávková, I; Pavliš, O; Roh, J; Savková, K; Stolaříková, J; Vávrová, K1

Reviews

1 review(s) available for gentamicin c1a and amikacin

ArticleYear
Insights of synthetic analogues of anti-leprosy agents.
    Bioorganic & medicinal chemistry, 2019, 07-01, Volume: 27, Issue:13

    Topics: Humans; Leprostatic Agents; Leprosy; Structure-Activity Relationship

2019

Other Studies

12 other study(ies) available for gentamicin c1a and amikacin

ArticleYear
Synthesis, antibacterial and cytotoxic activities of new biflorin-based hydrazones and oximes.
    Bioorganic & medicinal chemistry letters, 2016, Jan-15, Volume: 26, Issue:2

    Topics: Anti-Bacterial Agents; Antineoplastic Agents, Phytogenic; Bacteria; Bacterial Infections; Cell Line, Tumor; Humans; Hydrazones; Microbial Sensitivity Tests; Naphthoquinones; Neoplasms; Oximes; Scrophulariaceae

2016
Development of 3,5-Dinitrobenzylsulfanyl-1,3,4-oxadiazoles and Thiadiazoles as Selective Antitubercular Agents Active Against Replicating and Nonreplicating Mycobacterium tuberculosis.
    Journal of medicinal chemistry, 2016, Mar-24, Volume: 59, Issue:6

    Topics: Animals; Antitubercular Agents; Bacteria; Cell Line; Cell Survival; Drug Design; Drug Resistance, Multiple, Bacterial; Fungi; Humans; Latent Tuberculosis; Microbial Sensitivity Tests; Microsomes; Mutagens; Mycobacterium tuberculosis; Oxazoles; Primary Cell Culture; Rifampin; Structure-Activity Relationship; Thiadiazoles

2016
Hybrid Antibiotic Overcomes Resistance in P. aeruginosa by Enhancing Outer Membrane Penetration and Reducing Efflux.
    Journal of medicinal chemistry, 2016, 09-22, Volume: 59, Issue:18

    Topics: Anti-Bacterial Agents; Drug Resistance, Multiple, Bacterial; Fluoroquinolones; Humans; Moxifloxacin; Pseudomonas aeruginosa; Pseudomonas Infections; Tobramycin

2016
New Broad-Spectrum Antibacterial Amphiphilic Aminoglycosides Active against Resistant Bacteria: From Neamine Derivatives to Smaller Neosamine Analogues.
    Journal of medicinal chemistry, 2016, Oct-27, Volume: 59, Issue:20

    Topics: Aminoglycosides; Anti-Bacterial Agents; Dose-Response Relationship, Drug; Drug Resistance, Bacterial; Framycetin; Glucosamine; Gram-Negative Bacteria; Gram-Positive Bacteria; Microbial Sensitivity Tests; Molecular Structure; Structure-Activity Relationship; Surface-Active Agents

2016
S-substituted 3,5-dinitrophenyl 1,3,4-oxadiazole-2-thiols and tetrazole-5-thiols as highly efficient antitubercular agents.
    European journal of medicinal chemistry, 2017, Jan-27, Volume: 126

    Topics: Antifungal Agents; Antitubercular Agents; Drug Design; Drug Resistance; Hep G2 Cells; Humans; Microbial Sensitivity Tests; Oxadiazoles; Structure-Activity Relationship; Sulfhydryl Compounds; Tetrazoles

2017
Prediction of Antibiotic Interactions Using Descriptors Derived from Molecular Structure.
    Journal of medicinal chemistry, 2017, 05-11, Volume: 60, Issue:9

    Topics: Anti-Bacterial Agents; Drug Interactions; Molecular Structure

2017
Amphiphilic Tobramycin-Lysine Conjugates Sensitize Multidrug Resistant Gram-Negative Bacteria to Rifampicin and Minocycline.
    Journal of medicinal chemistry, 2017, 05-11, Volume: 60, Issue:9

    Topics: Anti-Bacterial Agents; Drug Resistance, Multiple, Bacterial; Gram-Negative Bacteria; Gram-Positive Bacteria; Hemolysis; Lysine; Microbial Sensitivity Tests; Minocycline; Models, Biological; Rifampin; Tobramycin

2017
Development of water-soluble 3,5-dinitrophenyl tetrazole and oxadiazole antitubercular agents.
    Bioorganic & medicinal chemistry, 2017, 10-15, Volume: 25, Issue:20

    Topics: Antitubercular Agents; Caco-2 Cells; Cell Line; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Hep G2 Cells; Humans; Microbial Sensitivity Tests; Molecular Structure; Mycobacterium tuberculosis; Oxadiazoles; Solubility; Structure-Activity Relationship; Tetrazoles; Water

2017
Broad-spectrum antibacterial amphiphilic aminoglycosides: A new focus on the structure of the lipophilic groups extends the series of active dialkyl neamines.
    European journal of medicinal chemistry, 2018, Sep-05, Volume: 157

    Topics: Aminoglycosides; Anti-Bacterial Agents; Cell Survival; Dose-Response Relationship, Drug; Eukaryotic Cells; Framycetin; Humans; Microbial Sensitivity Tests; Molecular Structure; Pseudomonas aeruginosa; Structure-Activity Relationship; Surface-Active Agents

2018
Antimicrobial Peptides with High Proteolytic Resistance for Combating Gram-Negative Bacteria.
    Journal of medicinal chemistry, 2019, 03-14, Volume: 62, Issue:5

    Topics: Animals; Anti-Bacterial Agents; Antimicrobial Cationic Peptides; Biocompatible Materials; Gram-Negative Bacteria; HEK293 Cells; Humans; Mice; Microbial Sensitivity Tests; Microscopy, Electron, Scanning; Proteolysis; RAW 264.7 Cells; Spectrometry, Fluorescence

2019
Microwave-assisted solid-phase synthesis of antisense acpP peptide nucleic acid-peptide conjugates active against colistin- and tigecycline-resistant E. coli and K. pneumoniae.
    European journal of medicinal chemistry, 2019, Apr-15, Volume: 168

    Topics: Anti-Bacterial Agents; Colistin; Dose-Response Relationship, Drug; Drug Resistance, Bacterial; Escherichia coli; Klebsiella pneumoniae; Microbial Sensitivity Tests; Microwaves; Molecular Structure; Peptide Nucleic Acids; Peptides; Solid-Phase Synthesis Techniques; Structure-Activity Relationship; Tigecycline

2019
Development of 3,5-Dinitrophenyl-Containing 1,2,4-Triazoles and Their Trifluoromethyl Analogues as Highly Efficient Antitubercular Agents Inhibiting Decaprenylphosphoryl-β-d-ribofuranose 2'-Oxidase.
    Journal of medicinal chemistry, 2019, 09-12, Volume: 62, Issue:17

    Topics: Alcohol Oxidoreductases; Antitubercular Agents; Bacterial Proteins; Dinitrobenzenes; Dose-Response Relationship, Drug; Drug Development; Hydrocarbons, Fluorinated; Models, Molecular; Molecular Structure; Mycobacterium tuberculosis; Structure-Activity Relationship; Triazoles

2019