genkwanin has been researched along with acacetin* in 4 studies
4 other study(ies) available for genkwanin and acacetin
Article | Year |
---|---|
Metabolic engineering in Streptomyces albidoflavus for the biosynthesis of the methylated flavonoids sakuranetin, acacetin, and genkwanin.
Flavonoids are important plant secondary metabolites showing antioxidant, antitumor, anti-inflammatory, and antiviral activities, among others. Methylated flavonoids are particularly interesting compared to non-methylated ones due to their greater stability and intestinal absorption, which improves their oral bioavailability. In this work we have stablished a metabolic engineered strain of Streptomyces albidoflavus with enhanced capabilities for flavonoid production, achieving a 1.6-fold increase in the biosynthesis of naringenin with respect to the parental strain. This improved strain, S. albidoflavus UO-FLAV-004, has been used for the heterologous biosynthesis of the methylated flavonoids sakuranetin, acacetin and genkwanin. The achieved titers of sakuranetin and acacetin were 8.2 mg/L and 5.8 mg/L, respectively. The genkwanin titers were 0.8 mg/L, with a bottleneck identified in this producing strain. After applying a co-culture strategy, genkwanin production titers reached 3.5 mg/L, which represents a 4.4-fold increase. To our knowledge, this study presents the first biosynthesis of methylated flavonoids in not only any Streptomyces species, but also in any Gram-positive bacteria. Topics: Flavonoids; Metabolic Engineering; Streptomyces | 2023 |
Cytotoxic fraction from Artemisia sacrorum Ledeb. against three human cancer cell lines and separation and identification of its compounds.
Artemisia sacrorum Ledeb. was extracted by 95% ethanol and water, respectively. By partitioning the 95% ethanol extract successively with different solvents and separating the water extract by macroporous resin, nine separate parts were obtained. According to the results of in vitro experiments, the CH₂Cl₂ (dichloromethane) fraction showed the most pronounced cytotoxic activity against HepG2, HT-29 and MCF-7 cells, with EC₅₀ values 122.35, 49.76 and 28.51 µg mL⁻¹, respectively, at 48 h. Following this, the compounds of the CH₂Cl₂ fraction were separated and identified. Ten compounds were isolated from A. sacrorum Ledeb. and identified by spectral analysis. Four compounds, including acacetin, were isolated for the first time from A. sacrorum Ledeb. Topics: Antineoplastic Agents; Artemisia; Flavones; Hep G2 Cells; HT29 Cells; Humans; MCF-7 Cells; Scopoletin | 2012 |
Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids.
CYP1A1 and CYP1B1 are two extrahepatic enzymes that have been implicated in carcinogenesis and cancer progression. Selective inhibition of CYP1A1 and CYP1B1 by dietary constituents, notably the class of flavonoids, is a widely accepted paradigm that supports the concept of dietary chemoprevention. In parallel, recent studies have documented the ability of CYP1 enzymes to selectively metabolize dietary flavonoids to conversion products that inhibit cancer cell proliferation. In the present study we have examined the inhibition of CYP1A1 and CYP1B1-catalyzed EROD activity by 14 different flavonoids containing methoxy- and hydroxyl-group substitutions as well as the metabolism of the monomethoxylated CYP1-flavonoid inhibitor acacetin and the poly-methoxylated flavone eupatorin-5-methyl ether by recombinant CYP1A1 and CYP1B1. The most potent inhibitors of CYP1-EROD activity were the methoxylated flavones acacetin, diosmetin, eupatorin and the di-hydroxylated flavone chrysin, indicating that the 4'-OCH(3) group at the B ring and the 5,7-dihydroxy motif at the A ring play a prominent role in EROD inhibition. Potent inhibition of CYP1B1 EROD activity was also obtained for the poly-hydroxylated flavonols quercetin and myricetin. HPLC metabolism of acacetin by CYP1A1 and CYP1B1 revealed the formation of the structurally similar flavone apigenin by demethylation at the 4'-position of the B ring, whereas the flavone eupatorin-5-methyl ether was metabolized to an as yet unidentified metabolite assigned E(5)M1. Eupatorin-5-methyl ether demonstrated a submicromolar IC(50) in the CYP1-expressing cancer cell line MDA-MB 468, while it was considerably inactive in the normal cell line MCF-10A. Homology modeling in conjunction with molecular docking calculations were employed in an effort to rationalize the activity of these flavonoids based on their CYP1-binding mode. Taken together the data suggest that dietary flavonoids exhibit three distinct modes of action with regard to cancer prevention, based on their hydroxyl and methoxy decoration: (1) inhibitors of CYP1 enzymatic activity, (2) CYP1 substrates and (3) substrates and inhibitors of CYP1 enzymes. Topics: Aryl Hydrocarbon Hydroxylases; Binding Sites; Cell Line; Computer Simulation; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1B1; Enzyme Inhibitors; Flavones; Flavonoids; Humans; Recombinant Proteins; Substrate Specificity | 2011 |
[Chemical constituents from flowers of Chrysanthemum indicum].
To investigate the chemical constituents of the flowers of Chrysanthemum indicum.. The chemical constituents were isolated by various column chromatographic methods. The structures were identified by spectral data.. Twelve compounds were isolated and identified as acacetin (1), tricin (2), 2',4'-dihydroxychalcone(3), 5-hydroxy-4',7-dimethoxyflavon(4),7hydroxyflavonone (5), isorhamnetin (6),5,6,7-trihydroxy- 3',4', 5'-trimethoxyflanon (7 ), quercetin (8) , (3 beta, 5 alpha, 6 beta, 7 beta, 14 beta)-eudesmen-3,5,6,11-tetrol (9), syringaresinol (10), liriodendrin (11), and genkwanin (12).. Compounds 3-7, 10-12 were isolated from this species for the first time, and compounds 3, 5, 7, 10, 11 were obtained from genus Chrysanthemum for the first time. Topics: Chalcones; Chrysanthemum; Flavones; Flavonoids; Flavonols; Flowers; Furans; Glucosides; Lignans; Quercetin | 2010 |