Page last updated: 2024-08-24

gemcitabine and 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1h-imidazol-2-yl)benzamide

gemcitabine has been researched along with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1h-imidazol-2-yl)benzamide in 2 studies

Research

Studies (2)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's2 (100.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Davis, MI; Khan, J; Li, SQ; Patel, PR; Shen, M; Sun, H; Thomas, CJ1
Gunn, JR; Korc, M; Sempere, LF1

Other Studies

2 other study(ies) available for gemcitabine and 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1h-imidazol-2-yl)benzamide

ArticleYear
Identification of potent Yes1 kinase inhibitors using a library screening approach.
    Bioorganic & medicinal chemistry letters, 2013, Aug-01, Volume: 23, Issue:15

    Topics: Binding Sites; Cell Line; Cell Survival; Drug Design; Humans; Hydrogen Bonding; Molecular Docking Simulation; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-yes; Small Molecule Libraries; Structure-Activity Relationship

2013
A novel 3-dimensional culture system uncovers growth stimulatory actions by TGFβ in pancreatic cancer cells.
    Cancer biology & therapy, 2011, Aug-01, Volume: 12, Issue:3

    Topics: Animals; Benzamides; Carcinoma, Pancreatic Ductal; Cell Culture Techniques; Cell Line, Tumor; Cell Proliferation; Cisplatin; Culture Media; Deoxycytidine; Dioxoles; Drug Resistance, Neoplasm; Epidermal Growth Factor; ErbB Receptors; Erlotinib Hydrochloride; Extracellular Matrix; Gemcitabine; Humans; Mice; Mice, Transgenic; Pancreatic Neoplasms; Quinazolines; Receptors, Transforming Growth Factor beta; Transforming Growth Factor beta; Transforming Growth Factor beta1; Tumor Microenvironment

2011