gefitinib has been researched along with quinidine in 11 studies
Studies (gefitinib) | Trials (gefitinib) | Recent Studies (post-2010) (gefitinib) | Studies (quinidine) | Trials (quinidine) | Recent Studies (post-2010) (quinidine) |
---|---|---|---|---|---|
5,231 | 566 | 2,919 | 6,608 | 387 | 594 |
Protein | Taxonomy | gefitinib (IC50) | quinidine (IC50) |
---|---|---|---|
Voltage-dependent L-type calcium channel subunit alpha-1F | Homo sapiens (human) | 6.4 | |
Cholinesterase | Homo sapiens (human) | 1.23 | |
ATP-dependent translocase ABCB1 | Mus musculus (house mouse) | 10 | |
ATP-dependent translocase ABCB1 | Homo sapiens (human) | 3.32 | |
Cytochrome P450 2D26 | Rattus norvegicus (Norway rat) | 2.8 | |
Cytochrome P450 2D6 | Homo sapiens (human) | 0.3532 | |
Potassium voltage-gated channel subfamily A member 5 | Homo sapiens (human) | 7.3 | |
Cholinesterase | Equus caballus (horse) | 7.37 | |
Voltage-dependent L-type calcium channel subunit alpha-1D | Homo sapiens (human) | 6.4 | |
Potassium voltage-gated channel subfamily H member 2 | Homo sapiens (human) | 0.7882 | |
Voltage-dependent L-type calcium channel subunit alpha-1S | Homo sapiens (human) | 6.4 | |
Voltage-dependent L-type calcium channel subunit alpha-1C | Homo sapiens (human) | 6.4 | |
Sodium channel protein type 5 subunit alpha | Homo sapiens (human) | 6.9 | |
Potassium voltage-gated channel subfamily D member 2 | Rattus norvegicus (Norway rat) | 2.2 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (27.27) | 29.6817 |
2010's | 8 (72.73) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Andricopulo, AD; Moda, TL; Montanari, CA | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Artursson, P; Bergström, CA; Hoogstraate, J; Matsson, P; Norinder, U; Pedersen, JM | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Ghosh, I; Manoharlal, R; Prakash, O; Prasad, R; Puri, N; Sharma, M | 1 |
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Dalvie, D; Loi, CM; Smith, DA | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Jang, S; Jung, D; Lee, JW; Lee, S; Min, KH; Song, J | 1 |
1 review(s) available for gefitinib and quinidine
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
10 other study(ies) available for gefitinib and quinidine
Article | Year |
---|---|
Hologram QSAR model for the prediction of human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Holography; Humans; Models, Biological; Models, Molecular; Molecular Structure; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2007 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2).
Topics: Administration, Oral; Animals; Antineoplastic Agents; Antipsychotic Agents; Antiviral Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Line; Computer Simulation; Cytochrome P-450 Enzyme System; Drug-Related Side Effects and Adverse Reactions; Estradiol; Humans; Insecta; Liver; Models, Molecular; Multidrug Resistance-Associated Protein 2; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Pharmaceutical Preparations; Pharmacology; Structure-Activity Relationship | 2008 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Analysis of physico-chemical properties of substrates of ABC and MFS multidrug transporters of pathogenic Candida albicans.
Topics: Candida albicans; Membrane Transport Proteins; Saccharomyces cerevisiae; Structure-Activity Relationship; Substrate Specificity | 2010 |
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Which metabolites circulate?
Topics: Humans; Metabolic Clearance Rate; Pharmaceutical Preparations | 2013 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Click chemistry for improvement in selectivity of quinazoline-based kinase inhibitors for mutant epidermal growth factor receptors.
Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Cell Survival; Click Chemistry; Dose-Response Relationship, Drug; Drug Discovery; Drug Screening Assays, Antitumor; ErbB Receptors; Humans; Molecular Structure; Mutation; Protein Kinase Inhibitors; Quinazolines; Structure-Activity Relationship | 2019 |