Page last updated: 2024-09-03

gefitinib and cudc 101

gefitinib has been researched along with cudc 101 in 6 studies

Compound Research Comparison

Studies
(gefitinib)
Trials
(gefitinib)
Recent Studies (post-2010)
(gefitinib)
Studies
(cudc 101)
Trials
(cudc 101)
Recent Studies (post-2010) (cudc 101)
5,2315662,91939235

Protein Interaction Comparison

ProteinTaxonomygefitinib (IC50)cudc 101 (IC50)
Histone deacetylase 3Homo sapiens (human)0.1561
Tyrosine-protein kinase ABL1Homo sapiens (human)2.89
Epidermal growth factor receptorHomo sapiens (human)0.0046
Receptor tyrosine-protein kinase erbB-2Homo sapiens (human)0.0525
Tyrosine-protein kinase LckHomo sapiens (human)5.91
Tyrosine-protein kinase LynHomo sapiens (human)0.84
Proto-oncogene tyrosine-protein kinase receptor RetHomo sapiens (human)3.2
Fibroblast growth factor receptor 2Homo sapiens (human)3.43
Vascular endothelial growth factor receptor 2Homo sapiens (human)0.849
Receptor-type tyrosine-protein kinase FLT3Homo sapiens (human)1.5
Histone deacetylase 4Homo sapiens (human)0.1567
Fatty-acid amide hydrolase 1Rattus norvegicus (Norway rat)3.7086
Histone deacetylase 1Homo sapiens (human)0.1554
Histone deacetylase 7Homo sapiens (human)0.2081
Histone deacetylase 2Homo sapiens (human)0.1566
Polyamine deacetylase HDAC10Homo sapiens (human)0.1815
Histone deacetylase 11 Homo sapiens (human)0.1806
Histone deacetylase 8Homo sapiens (human)0.1662
Histone deacetylase 6Homo sapiens (human)0.1555
Histone deacetylase 9Homo sapiens (human)0.1644
Histone deacetylase 5Homo sapiens (human)0.1564

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's6 (100.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Morphy, R1
Davis, MI; Khan, J; Li, SQ; Patel, PR; Shen, M; Sun, H; Thomas, CJ1
Bantscheff, M; Bergamini, G; Gohlke, B; Gupta, V; Handa, H; Heinzlmeir, S; Helm, D; Klaeger, S; Kuster, B; Médard, G; Perrin, J; Preissner, R; Qiao, H; Savitski, MM1
Chen, S; Chen, YZ; Ding, C; Hu, G; Jiang, Y; Li, L; Tan, C; Zhang, C; Zhang, W1
Aiche, S; Bassermann, F; Becker, W; Canevari, G; Casale, E; Depaolini, SR; Ehrlich, HC; Felder, ER; Feuchtinger, A; Garz, AK; Gohlke, BO; Götze, K; Greif, PA; Hahne, H; Heinzlmeir, S; Helm, D; Huenges, J; Jeremias, I; Kayser, G; Klaeger, S; Koch, H; Koenig, PA; Kramer, K; Kuster, B; Médard, G; Meng, C; Petzoldt, S; Polzer, H; Preissner, R; Qiao, H; Reinecke, M; Reiter, K; Rueckert, L; Ruland, J; Ruprecht, B; Schlegl, J; Schmidt, T; Schneider, S; Schoof, M; Spiekermann, K; Tõnisson, N; Vick, B; Vooder, T; Walch, A; Wilhelm, M; Wu, Z; Zecha, J; Zolg, DP1
Biswas, L; Keechilat, P; Melge, AR; Mohan, CG; Panicker, PS1

Reviews

1 review(s) available for gefitinib and cudc 101

ArticleYear
Selectively nonselective kinase inhibition: striking the right balance.
    Journal of medicinal chemistry, 2010, Feb-25, Volume: 53, Issue:4

    Topics: Animals; Antineoplastic Agents; Drug Design; Drug Discovery; Humans; Protein Binding; Protein Kinase Inhibitors; Structure-Activity Relationship

2010

Other Studies

5 other study(ies) available for gefitinib and cudc 101

ArticleYear
Identification of potent Yes1 kinase inhibitors using a library screening approach.
    Bioorganic & medicinal chemistry letters, 2013, Aug-01, Volume: 23, Issue:15

    Topics: Binding Sites; Cell Line; Cell Survival; Drug Design; Humans; Hydrogen Bonding; Molecular Docking Simulation; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-yes; Small Molecule Libraries; Structure-Activity Relationship

2013
Chemical Proteomics Reveals Ferrochelatase as a Common Off-target of Kinase Inhibitors.
    ACS chemical biology, 2016, 05-20, Volume: 11, Issue:5

    Topics: Benzocycloheptenes; Cell Line, Tumor; Ferrochelatase; Heme; Humans; Imidazoles; Indoles; Molecular Docking Simulation; Protein Binding; Protein Kinase Inhibitors; Proteomics; Pyrazines; Pyridines; Quinolines; Sulfonamides; Vemurafenib

2016
Synthesis and investigation of novel 6-(1,2,3-triazol-4-yl)-4-aminoquinazolin derivatives possessing hydroxamic acid moiety for cancer therapy.
    Bioorganic & medicinal chemistry, 2017, 01-01, Volume: 25, Issue:1

    Topics: Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Drug Design; Drug Screening Assays, Antitumor; Green Fluorescent Proteins; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Molecular Docking Simulation; Quinazolines; Receptor, ErbB-2; Structure-Activity Relationship; Triazoles

2017
The target landscape of clinical kinase drugs.
    Science (New York, N.Y.), 2017, 12-01, Volume: 358, Issue:6367

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays

2017
Epidermal growth factor receptor (EGFR) structure-based bioactive pharmacophore models for identifying next-generation inhibitors against clinically relevant EGFR mutations.
    Chemical biology & drug design, 2017, Volume: 90, Issue:4

    Topics: Antineoplastic Agents; Computer-Aided Design; Databases, Pharmaceutical; Drug Design; ErbB Receptors; Erlotinib Hydrochloride; Gefitinib; Humans; Hydroxamic Acids; Molecular Docking Simulation; Mutation; Protein Kinase Inhibitors; Quantitative Structure-Activity Relationship; Quinazolines; Small Molecule Libraries

2017