Page last updated: 2024-09-03

gefitinib and bortezomib

gefitinib has been researched along with bortezomib in 28 studies

Compound Research Comparison

Studies
(gefitinib)
Trials
(gefitinib)
Recent Studies (post-2010)
(gefitinib)
Studies
(bortezomib)
Trials
(bortezomib)
Recent Studies (post-2010) (bortezomib)
5,2315662,9196,8688604,753

Protein Interaction Comparison

ProteinTaxonomygefitinib (IC50)bortezomib (IC50)
Proteasome subunit beta type-11Homo sapiens (human)0.3213
26S proteasome non-ATPase regulatory subunit 11Homo sapiens (human)0.5335
26S proteasome non-ATPase regulatory subunit 12Homo sapiens (human)0.5335
26S proteasome non-ATPase regulatory subunit 14Homo sapiens (human)0.5335
Proteasome subunit alpha type-7Homo sapiens (human)0.3213
Histone deacetylase 3Homo sapiens (human)1.18
26S proteasome non-ATPase regulatory subunit 3Homo sapiens (human)0.5335
Cathepsin GHomo sapiens (human)1.81
Lysosomal protective proteinHomo sapiens (human)9.2
26S proteasome regulatory subunit 6AHomo sapiens (human)0.5335
Nuclear factor NF-kappa-B p105 subunitHomo sapiens (human)0.085
Proteasome subunit beta type-1Homo sapiens (human)0.2149
ChymaseHomo sapiens (human)1.19
Proteasome subunit alpha type-1Homo sapiens (human)0.3213
Proteasome subunit alpha type-2Homo sapiens (human)0.3213
Proteasome subunit alpha type-3Homo sapiens (human)0.3213
Proteasome subunit alpha type-4Homo sapiens (human)0.3213
Proteasome subunit beta type-8Homo sapiens (human)0.1681
Proteasome subunit beta type-8Mus musculus (house mouse)0.0168
Proteasome subunit beta type-9Homo sapiens (human)0.2059
Proteasome subunit alpha type-5Homo sapiens (human)0.3213
Proteasome subunit beta type-4Homo sapiens (human)0.3213
Proteasome subunit beta type-6Homo sapiens (human)0.2842
Proteasome subunit beta type-5Homo sapiens (human)0.1407
26S proteasome regulatory subunit 7Homo sapiens (human)0.5335
Lon protease homolog, mitochondrialHomo sapiens (human)0.183
Proteasome subunit beta type-10Homo sapiens (human)0.5359
26S proteasome regulatory subunit 6BHomo sapiens (human)0.5335
26S proteasome non-ATPase regulatory subunit 8Homo sapiens (human)0.5335
Proteasome subunit beta type-3Homo sapiens (human)0.3213
Proteasome subunit beta type-2Homo sapiens (human)0.9297
26S proteasome non-ATPase regulatory subunit 7Homo sapiens (human)0.5335
26S proteasome non-ATPase regulatory subunit 4Homo sapiens (human)0.5335
26S proteasome complex subunit SEM1Homo sapiens (human)0.5335
Proteasome subunit alpha type-6Homo sapiens (human)0.3213
26S proteasome regulatory subunit 4Homo sapiens (human)0.5335
26S proteasome regulatory subunit 8Homo sapiens (human)0.5335
26S proteasome regulatory subunit 10BHomo sapiens (human)0.5335
Nuclear factor NF-kappa-B p100 subunit Homo sapiens (human)0.085
Transcription factor p65Homo sapiens (human)0.085
26S proteasome non-ATPase regulatory subunit 2Homo sapiens (human)0.5335
Histone deacetylase 1Homo sapiens (human)0.62
26S proteasome non-ATPase regulatory subunit 6Homo sapiens (human)0.5335
Proteasomal ubiquitin receptor ADRM1Homo sapiens (human)0.5335
ATP-dependent Clp protease proteolytic subunitStaphylococcus aureus subsp. aureus NCTC 83255.3
NACHT, LRR and PYD domains-containing protein 3 Mus musculus (house mouse)0.0407
Proteasome subunit alpha-type 8Homo sapiens (human)0.3213
Histone deacetylase 2Homo sapiens (human)0.8
Proteasome subunit beta type-7Homo sapiens (human)0.3213
26S proteasome non-ATPase regulatory subunit 1Homo sapiens (human)0.5335
Histone deacetylase 8Homo sapiens (human)0.072
26S proteasome non-ATPase regulatory subunit 13Homo sapiens (human)0.5335

Research

Studies (28)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's15 (53.57)29.6817
2010's12 (42.86)24.3611
2020's1 (3.57)2.80

Authors

AuthorsStudies
Lombardo, F; Obach, RS; Waters, NJ1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Davis, MI; Khan, J; Li, SQ; Patel, PR; Shen, M; Sun, H; Thomas, CJ1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Abadi, AH; Darwish, SS; Engel, M; Hamed, MM; Herrmann, J1
Abou-Zeid, LA; Ashour, HF; El-Sayed, MA; Selim, KB1
Daud, A; Munster, P; Spriggs, DR1
Goldman, B1
Shiotsu, Y1
Capriotti, T1
Kaplow, R1
Masuda, N; Yanase, N; Yokoba, M1
Nakayama, M; Nishimura, K; Nonomura, N; Okuyama, A; Takayama, H1
Auberger, J; Hilbe, W; Loeffler-Ragg, J; Wurzer, W1
Caldara, A; Graiff, C; Mandarà, M; Pedersini, R; Sava, T; Vattemi, E1
Berrino, L; Cascone, T; Ciardiello, F; Heymach, JV; Kim, WY; Lee, HY; Morelli, MP; Morgillo, F; Pepe, S; Rodolico, G; Tortora, G1
Kimpe, M; Nuyts, S; Prenen, H1
Cambar, J; De Giorgi, F; Ichas, F; L'Azou, B; Passagne, I; Pédeboscq, S; Pometan, JP1
Adachii, M; Ando, K; Hirose, T; Hosaka, T; Inoue, F; Ishida, H; Kadofuku, T; Kanome, T; Kusumoto, S; Ohmori, T; Ohnishi, T; Okuda, K; Saijo, N; Shirai, T; Sugiyama, T; Yamaoka, T1
Cascone, T; Ciardiello, F; D'Aiuto, E; De Palma, R; De Vita, F; Martinelli, E; Morgillo, F; Orditura, M; Troiani, T1
Arango, BA; Cohen, EE; Perez, CA; Raez, LE; Santos, ES1
Curtit, E; Mansi, L; Viel, E; Vignot, S1
Cassidy, J; Hochster, H1
Chen, CH; Chen, JY; Chen, WS; Chen, YJ; Chien, PH; Hsia, TC; Huang, WC; Liu, SH; Shih, CY; Tu, CY; Wei, YL; Yeh, MH; Yu, MC; Yu, YL1
Cui, A; Hou, J; Hua, H; Jiang, Y; Luo, T; Song, P1
Erbacher, I; Gotham, D; Harada, R; Hill, A; Meldrum, J; Redd, C1
Bergqvist, M; Bergström, S; Ekman, S; Gullbo, J; Lennartsson, J; Sooman, L1

Reviews

12 review(s) available for gefitinib and bortezomib

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016
New drugs in gynecologic cancer.
    Current treatment options in oncology, 2001, Volume: 2, Issue:2

    Topics: Aminopyridines; Anti-Bacterial Agents; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Boronic Acids; Bortezomib; Cisplatin; Female; Gefitinib; Genital Neoplasms, Female; Humans; Hydroxamic Acids; Lactams, Macrocyclic; Organoplatinum Compounds; Paclitaxel; Protein-Tyrosine Kinases; Pyrazines; Quinazolines; Trastuzumab

2001
[Current screening for molecular target therapy of cancer].
    Gan to kagaku ryoho. Cancer & chemotherapy, 2003, Volume: 30, Issue:12

    Topics: Angiogenesis Inhibitors; Animals; Antineoplastic Agents; Benzamides; Boronic Acids; Bortezomib; Drug Delivery Systems; Drug Screening Assays, Antitumor; Gefitinib; Heat-Shock Proteins; Humans; Imatinib Mesylate; Indoles; Lactones; Mice; Neoplasms; Phthalazines; Piperazines; Piperidines; Pyrazines; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sunitinib

2003
New oncology strategy: molecular targeting of cancer cells.
    Medsurg nursing : official journal of the Academy of Medical-Surgical Nurses, 2004, Volume: 13, Issue:3

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Boronic Acids; Bortezomib; Cetuximab; Cysteine Endopeptidases; ErbB Receptors; Gefitinib; Genetics, Medical; Humans; Medical Oncology; Molecular Biology; Multienzyme Complexes; Neoplasms; Neovascularization, Pathologic; Nurse's Role; Oncology Nursing; Protease Inhibitors; Proteasome Endopeptidase Complex; Pyrazines; Quinazolines; Trastuzumab; Vascular Endothelial Growth Factor A

2004
Innovations in antineoplastic therapy.
    The Nursing clinics of North America, 2005, Volume: 40, Issue:1

    Topics: Adjuvants, Immunologic; Alemtuzumab; Aminoglycosides; Anastrozole; Androstadienes; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antibodies, Neoplasm; Antineoplastic Agents; Arsenic Trioxide; Arsenicals; Benzamides; Bile; Boronic Acids; Bortezomib; Capecitabine; Cetuximab; Decanoic Acids; Deoxycytidine; Docetaxel; Drug Approval; Estradiol; Fluorouracil; Fulvestrant; Gefitinib; Gemtuzumab; Humans; Imatinib Mesylate; Letrozole; Leuprolide; Nitriles; Oligopeptides; Organoplatinum Compounds; Oxaliplatin; Oxides; Piperazines; Polyesters; Pyrazines; Pyrimidines; Quinazolines; Taxoids; Thionucleotides; Tissue Extracts; Triazoles; United States; United States Food and Drug Administration; Vidarabine Phosphate

2005
[New anti-cancer agents--from cytotoxic systemic chemotherapy to target-based agents].
    Gan to kagaku ryoho. Cancer & chemotherapy, 2005, Volume: 32, Issue:6

    Topics: Anthracyclines; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Bevacizumab; Boronic Acids; Bortezomib; Camptothecin; Carcinoma, Non-Small-Cell Lung; Cetuximab; Clinical Trials as Topic; Deoxycytidine; Drug Combinations; Erlotinib Hydrochloride; Furans; Gefitinib; Gemcitabine; Glutamates; Guanine; Humans; Irinotecan; Lung Neoplasms; Oxonic Acid; Pemetrexed; Pyrazines; Pyridines; Quinazolines; Tegafur; Vinblastine; Vinorelbine

2005
Targeted therapies in non-small cell lung cancer: proven concepts and unfulfilled promises.
    Current cancer drug targets, 2006, Volume: 6, Issue:4

    Topics: Angiogenesis Inhibitors; Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Bevacizumab; Boronic Acids; Bortezomib; Carcinoma, Non-Small-Cell Lung; Clinical Trials as Topic; Drug Delivery Systems; ErbB Receptors; Gefitinib; Humans; Lung Neoplasms; Neovascularization, Pathologic; Protease Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Kinase Inhibitors; Pyrazines; Quinazolines; Signal Transduction; Vascular Endothelial Growth Factor A

2006
Systemic therapies for recurrent and/or metastatic salivary gland cancers.
    Expert review of anticancer therapy, 2008, Volume: 8, Issue:3

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Agents, Hormonal; Benzamides; Boronic Acids; Bortezomib; Cetuximab; Gefitinib; Humans; Imatinib Mesylate; Lapatinib; Neoplasm Metastasis; Neoplasm Recurrence, Local; Palliative Care; Piperazines; Pyrazines; Pyrimidines; Quinazolines; Salivary Gland Neoplasms; Trastuzumab

2008
Salivary gland carcinomas: molecular abnormalities as potential therapeutic targets.
    Current opinion in oncology, 2008, Volume: 20, Issue:3

    Topics: Angiogenesis Inhibitors; Antineoplastic Agents; Benzamides; Boronic Acids; Bortezomib; ErbB Receptors; Gefitinib; Humans; Imatinib Mesylate; Piperazines; Protein-Tyrosine Kinases; Pyrazines; Pyrimidines; Quinazolines; Salivary Gland Neoplasms; Signal Transduction; Vascular Endothelial Growth Factor A

2008
Novel molecular targeted therapies for refractory thyroid cancer.
    Head & neck, 2012, Volume: 34, Issue:5

    Topics: Angiogenesis Inhibitors; Anilides; Antineoplastic Agents; Axitinib; Benzamides; Benzenesulfonates; Benzoquinones; Bibenzyls; Boronic Acids; Bortezomib; Depsipeptides; ErbB Receptors; Gefitinib; Histone Deacetylase Inhibitors; HSP90 Heat-Shock Proteins; Humans; Hydroxamic Acids; Imatinib Mesylate; Imidazoles; Indazoles; Indoles; Lactams, Macrocyclic; Lenalidomide; Niacinamide; Oligonucleotides; Phenylurea Compounds; Piperazines; Piperidines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-kit; Pyrazines; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Quinolines; Receptor Protein-Tyrosine Kinases; Receptors, Vascular Endothelial Growth Factor; Sorafenib; Sulfonamides; Sunitinib; Thalidomide; Thyroid Neoplasms; Valproic Acid; Vorinostat

2012
[EGFR/HER1: a target life].
    Bulletin du cancer, 2012, Feb-01, Volume: 99, Issue:2

    Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Bevacizumab; Boronic Acids; Bortezomib; Cetuximab; Combined Modality Therapy; ErbB Receptors; Erlotinib Hydrochloride; Gefitinib; Humans; Mutation; Neoplasm Proteins; Neoplasms; Panitumumab; Prognosis; Protein-Tyrosine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins p21(ras); Pyrazines; Quinazolines; ras Proteins

2012
New oxaliplatin-based combinations in the treatment of colorectal cancer.
    Colorectal disease : the official journal of the Association of Coloproctology of Great Britain and Ireland, 2003, Volume: 5 Suppl 3

    Topics: Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; Bevacizumab; Boronic Acids; Bortezomib; Camptothecin; Capecitabine; Cetuximab; Colorectal Neoplasms; Deoxycytidine; Fluorouracil; Gefitinib; Humans; Irinotecan; Mitomycin; Organoplatinum Compounds; Oxaliplatin; Pyrazines; Quinazolines; Thiophenes

2003

Other Studies

16 other study(ies) available for gefitinib and bortezomib

ArticleYear
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Identification of potent Yes1 kinase inhibitors using a library screening approach.
    Bioorganic & medicinal chemistry letters, 2013, Aug-01, Volume: 23, Issue:15

    Topics: Binding Sites; Cell Line; Cell Survival; Drug Design; Humans; Hydrogen Bonding; Molecular Docking Simulation; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-yes; Small Molecule Libraries; Structure-Activity Relationship

2013
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
First Bispecific Inhibitors of the Epidermal Growth Factor Receptor Kinase and the NF-κB Activity As Novel Anticancer Agents.
    Journal of medicinal chemistry, 2017, 04-13, Volume: 60, Issue:7

    Topics: Animals; Antineoplastic Agents; Breast; Breast Neoplasms; Cell Line, Tumor; ErbB Receptors; Female; Human Umbilical Vein Endothelial Cells; Humans; Mice; Mice, Nude; Neoplasms; NF-kappa B; Quinazolines; Signal Transduction; Thiourea

2017
1,2,3-Triazole-Chalcone hybrids: Synthesis, in vitro cytotoxic activity and mechanistic investigation of apoptosis induction in multiple myeloma RPMI-8226.
    European journal of medicinal chemistry, 2020, Mar-01, Volume: 189

    Topics: Antineoplastic Agents; Apoptosis; Caspase 3; Cell Cycle; Cell Proliferation; Chalcones; Humans; Molecular Structure; Multiple Myeloma; Proto-Oncogene Proteins c-bcl-2; Structure-Activity Relationship; Triazoles; Tumor Cells, Cultured

2020
Combinations of targeted therapies take aim at multiple pathways.
    Journal of the National Cancer Institute, 2003, Nov-19, Volume: 95, Issue:22

    Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Boronic Acids; Bortezomib; Clinical Trials as Topic; Gefitinib; Humans; Imatinib Mesylate; Neoplasms; Piperazines; Pyrazines; Pyrimidines; Quinazolines; Research Design

2003
[Molecular-targeted therapy for hormone-refractory prostate cancer].
    Hinyokika kiyo. Acta urologica Japonica, 2006, Volume: 52, Issue:6

    Topics: Angiotensin Receptor Antagonists; Antineoplastic Agents; Atrasentan; Benzamides; Boronic Acids; Bortezomib; Calcitriol; Celecoxib; Cyclooxygenase 2 Inhibitors; Endothelin A Receptor Antagonists; ErbB Receptors; Gefitinib; Humans; Imatinib Mesylate; Male; Piperazines; Prostatic Neoplasms; Pyrazines; Pyrazoles; Pyrimidines; Pyrrolidines; Quinazolines; Sulfonamides; Thalidomide; Vitamin D

2006
Synergistic anti-proliferative and pro-apoptotic activity of combined therapy with bortezomib, a proteasome inhibitor, with anti-epidermal growth factor receptor (EGFR) drugs in human cancer cells.
    Journal of cellular physiology, 2008, Volume: 216, Issue:3

    Topics: Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Cell Line, Tumor; Cetuximab; Dose-Response Relationship, Drug; Drug Combinations; Drug Synergism; Enzyme Activation; ErbB Receptors; Gefitinib; Humans; Mitogen-Activated Protein Kinases; Piperidines; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Proto-Oncogene Proteins c-akt; Pyrazines; Quinazolines; Signal Transduction

2008
Cytotoxic and apoptotic effects of bortezomib and gefitinib compared to alkylating agents on human glioblastoma cells.
    Journal of experimental therapeutics & oncology, 2008, Volume: 7, Issue:2

    Topics: Animals; Antineoplastic Agents; Antineoplastic Agents, Alkylating; Apoptosis; Boronic Acids; Bortezomib; Brain Neoplasms; Carboplatin; Carmustine; Cell Line, Tumor; Dacarbazine; Dose-Response Relationship, Drug; ErbB Receptors; Flow Cytometry; Gefitinib; Glial Fibrillary Acidic Protein; Glioblastoma; Immunohistochemistry; Indicators and Reagents; Mice; Proteasome Inhibitors; Pyrazines; Quinazolines; Rats; Temozolomide; Tetrazolium Salts; Thiazoles

2008
Combination effect between bortezomib and tumor necrosis factor alpha on gefitinib-resistant non-small cell lung cancer cell lines.
    Anticancer research, 2009, Volume: 29, Issue:6

    Topics: Antineoplastic Agents; Boronic Acids; Bortezomib; Carcinoma, Non-Small-Cell Lung; Cell Proliferation; Drug Resistance, Neoplasm; Drug Therapy, Combination; ErbB Receptors; Gefitinib; Humans; Immunoblotting; Lung Neoplasms; Pyrazines; Quinazolines; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha

2009
Antitumor activity of bortezomib in human cancer cells with acquired resistance to anti-epidermal growth factor receptor tyrosine kinase inhibitors.
    Lung cancer (Amsterdam, Netherlands), 2011, Volume: 71, Issue:3

    Topics: Animals; Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Neoplasm; Erlotinib Hydrochloride; Female; Gefitinib; Humans; Mice; Mice, Inbred BALB C; Mice, Nude; Protein Kinase Inhibitors; Pyrazines; Quinazolines; Signal Transduction; Xenograft Model Antitumor Assays

2011
Lapatinib-induced NF-kappaB activation sensitizes triple-negative breast cancer cells to proteasome inhibitors.
    Breast cancer research : BCR, 2013, Nov-12, Volume: 15, Issue:6

    Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; ErbB Receptors; Erlotinib Hydrochloride; Female; Gefitinib; Humans; I-kappa B Kinase; Lapatinib; Mice, SCID; NF-kappa B; Phosphorylation; Proteasome Inhibitors; Pyrazines; Quinazolines; Receptor, ErbB-2; Triple Negative Breast Neoplasms; Xenograft Model Antitumor Assays

2013
Reactive oxygen species-mediated activation of the Src-epidermal growth factor receptor-Akt signaling cascade prevents bortezomib-induced apoptosis in hepatocellular carcinoma cells.
    Molecular medicine reports, 2015, Volume: 11, Issue:1

    Topics: Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Carcinoma, Hepatocellular; Cell Line, Tumor; Drug Resistance, Neoplasm; ErbB Receptors; Gefitinib; Humans; Liver Neoplasms; Phosphorylation; Proto-Oncogene Proteins c-akt; Pyrazines; Quinazolines; Reactive Oxygen Species; Signal Transduction; src-Family Kinases

2015
Estimated generic prices of cancer medicines deemed cost-ineffective in England: a cost estimation analysis.
    BMJ open, 2017, 01-20, Volume: 7, Issue:1

    Topics: Algorithms; Antineoplastic Agents; Bortezomib; Commerce; Cost-Benefit Analysis; Dasatinib; Drug Costs; Drugs, Generic; England; Everolimus; Gefitinib; Humans; Neoplasms; Quinazolines

2017
Synergistic effects of combining proteasome inhibitors with chemotherapeutic drugs in lung cancer cells.
    BMC research notes, 2017, Nov-02, Volume: 10, Issue:1

    Topics: Adenocarcinoma; Antineoplastic Agents; Bortezomib; Carcinoma, Non-Small-Cell Lung; Carcinoma, Squamous Cell; Cell Line, Tumor; Cisplatin; Deoxycytidine; Drug Therapy, Combination; Gefitinib; Gemcitabine; Humans; Piperidones; Proteasome Inhibitors; Quinazolines; Small Cell Lung Carcinoma; Vinblastine; Vinorelbine

2017