gastrins has been researched along with ubenimex* in 2 studies
2 other study(ies) available for gastrins and ubenimex
Article | Year |
---|---|
Antinociceptive action of cholecystokinin octapeptide (CCK 8) and related peptides in rats and mice: effects of naloxone and peptidase inhibitors.
Cholecystokinin octapeptide (CCK 8) produced significant antinociception in the tail immersion test in the rat, paw pressure test in the rat and acetylcholine-induced writhing test in the mouse after subcutaneous (s.c.) administration. In the hot plate test, CCK 8 (s.c.) showed antinociceptive activity if the latency to lick was used as the end point but if the latency to jump was recorded the antinociceptive effects were not evident. Cholecystokinin tetrapeptide (CCK 4) was shown to be antinociceptive in the writhing but not in the hot plate test after subcutaneous administration and appeared to be less potent than CCK 8 when tested under the same conditions. Antinociception induced by CCK 8 in the hot plate test (lick) could also be demonstrated after direct intracerebroventricular (i.c.v.) injection and this observation was also made with the CCK-related peptide FMRF amide. Antinociception induced by CCK 8 (which did not appear to be associated with reduced locomotor activity) was evident 5 min after intraventricular injection and was maximal at 10 min, the effect lasting over a 30-45 min period. The antinociceptive effect of CCK 8 was antagonised by naloxone and was potentiated by simultaneous administration of the peptidase inhibitors bestatin, thiorphan and captopril. Topics: Animals; Captopril; FMRFamide; Gastrins; Leucine; Male; Mice; Naloxone; Neuropeptides; Pain; Protease Inhibitors; Rats; Rats, Inbred Strains; Reaction Time; Sincalide; Tetragastrin; Thiorphan; Tiopronin | 1987 |
Cholecystokinin octa- and tetrapeptide degradation by synaptic membranes. I. Evidence for competition with enkephalins for in vitro common degradation pathways.
Degradation of CCK-4 and -8 by purified synaptic membranes was followed by measuring the fluorescence of tryptophan released from the peptides after separation of degradation products by HPLC. For enkephalins and related fragments, the release of tyrosine was monitored using the same method. Kinetics of hydrolysis of CCK-like peptides indicated a rapid processing of CCK-4 and a slower breakdown of CCK-8 (with a greater resistance of the sulfated form of CCK-8 as compared to the unsulfated peptide). Leu- and met-enkephalins were degraded at the same rate while their N-terminal tri- and dipeptides were hydrolysed more slowly. When CCK-4 or CCK-8 were incubated in the presence of leu-enkephalin, a dose-dependent inhibition of the release of tryptophan was observed. Enkaphalin fragments do not modify the kinetics of degradation of CCK-4. The degradation of leu-enkephalin was inhibited in a dose-dependent manner by the presence of CCK-related peptides in the medium. After solubilization of membrane-bound enzymes by Triton X-100 followed by chromatography on DEAE cellulose, five peaks of CCK-4 degrading activity were detected (two minor and three major peaks). With enkephalin as substrate, five peaks were also observed; the three major activities were the same as those detected for CCK-4. Topics: Aminopeptidases; Animals; Cholecystokinin; Chromatography, DEAE-Cellulose; Endorphins; Enkephalin, Leucine; Enkephalins; Gastrins; Kinetics; Leucine; Male; Peptide Fragments; Rats; Sincalide; Synaptic Membranes; Tetragastrin; Tryptophan | 1981 |