gastrins has been researched along with cetrorelix* in 3 studies
3 other study(ies) available for gastrins and cetrorelix
Article | Year |
---|---|
Luteinizing hormone-releasing hormone antagonist Cetrorelix (SB-75) and bombesin antagonist RC-3940-II inhibit the growth of androgen-independent PC-3 prostate cancer in nude mice.
Hormones like bombesin (BN)/gastrin-releasing peptide (GRP) and luteinizing hormone-releasing hormone (LH-RH) and growth factors such as epidermal growth factor (EGF) might be involved in the relapse of prostate cancer under androgen ablation therapy. Interference with receptors for BN/GRP, LH-RH, or EGF might provide a therapeutic approach to inhibit tumor growth of androgen-independent prostate cancer.. LH-RH antagonist Cetrorelix (SB-75) and the BN/GRP antagonist RC-3940-II were tested for their effects on the growth of the androgen-independent PC-3 human prostate cancer cell line xenografted into nude mice. Tumor growth, serum hormone levels, and receptor concentrations for BN/GRP and EGF were measured.. When the treatment was started, tumor volume in all groups was 70-80 mm3. After 4 weeks, tumor volume in the control animals injected with saline was 871 +/- 233 mm3 and that of animals treated with Cetrorelix only 197 +/- 61 mm3. The BN/GRP antagonist RC-3940-II also significantly reduced PC-3 tumor volume in nude mice to 122 +/- 20 mm3. The combination of Cetrorelix and RC-3940-II produced no additional inhibition. High-affinity receptors for EGF were detected in the tumor membranes and their number was significantly decreased after administration of Cetrorelix or RC-3940-II.. These findings demonstrate that LH-RH antagonists and BN/GRP antagonists inhibit the growth of the androgen-independent prostate cancer cell line PC-3 in vivo. Both analogs may exert a direct inhibitory effect on tumor growth through a down-regulation of EGF receptors. Topics: Animals; Antineoplastic Agents; Bombesin; Cell Division; DNA, Neoplasm; Drug Combinations; ErbB Receptors; Gastrins; Gonadotropin-Releasing Hormone; Hormone Antagonists; Humans; Luteinizing Hormone; Male; Mice; Mice, Nude; Neoplasm Transplantation; Peptide Fragments; Prostate; Prostatic Neoplasms; Receptors, Bombesin; Testosterone; Thymidine; Tumor Cells, Cultured | 1997 |
Inhibition of growth of androgen-independent DU-145 prostate cancer in vivo by luteinising hormone-releasing hormone antagonist Cetrorelix and bombesin antagonists RC-3940-II and RC-3950-II.
The aim of this study was to test the antagonist of LH-RH (Cetrorelix), agonist [D-Trp6]LH-RH (triptorelin) and new bombesin antagonists RC-3940-II and RC-3950-II for their effect on the growth of an androgen-independent prostate cancer cell line, DU-145, xenografted into nude mice. Xenografts were grown in male nude mice, and after 4 weeks, the animals were treated either with saline (control) or with one of the analogues. One group of mice was given a combination of Cetrorelix and RC-3950-II. Treatment was given for 4 weeks. Tumour and body weights, and tumour volumes were measured. At sacrifice, tumours were dissected for histological examination and receptor studies. Serum was collected for measurement of hormone levels. The final tumour volume in control animals injected with saline was 577 +/- 155 mm3 and that of animals treated with Cetrorelix only 121.4 +/- 45 mm3 (P < 0.01). Bombesin antagonists RC-3940-II and RC-3950-II also significantly reduced DU-145 tumour volume in nude mice to 84.9 +/- 19.9 and 96.8 +/- 28 mm3, respectively. Agonist [D-Trp6]LH-RH did not significantly inhibit tumour growth. Serum levels of LH were decreased to 0.08 +/- 0.02 ng/ml (P < 0.05) in the Cetrorelix treated group as compared to 1.02 +/- 0.1 ng/ml for the controls, and testosterone levels were reduced to castration levels (0.01 +/- 0.01 ng/ml). Specific receptors for EGF and LH-RH in DU-145 tumours were significantly downregulated after treatment with Cetrorelix, RC-3940-II and RC-3950-II. Although LH-RH could be a local regulator of growth of prostate cancer, the fall in LH-RH receptors is not fully understood and the inhibitory effects of Cetrorelix and bombesin antagonists on DU-145 tumour growth might be attributed at least in part to a downregulation of EHF receptors. Since Cetrorelix and bombesin antagonists inhibit growth of androgen-independent DU-145 prostate cancers, these compounds could be considered for the therapy of advanced prostate cancer in men, especially after relapse. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Body Weight; Bombesin; ErbB Receptors; Gastrins; Genitalia, Male; Gonadotropin-Releasing Hormone; Humans; Luteinizing Hormone; Male; Mice; Mice, Nude; Peptide Fragments; Prostatic Neoplasms; Receptors, Bombesin; Receptors, LHRH; Testosterone; Transplantation, Heterologous; Tumor Cells, Cultured | 1997 |
Effects of somatostatin analogue RC-160 and bombesin/gastrin-releasing peptide antagonists on the growth of human small-cell and non-small-cell lung carcinomas in nude mice.
We investigated the effects of our synthetic bombesin/gastrin-releasing peptide (GRP) antagonists and somatostatin analogue RC-160 on the growth of human small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (non-SCLC) lines in nude mice. Athymic nude mice bearing xenografts of the SCLC NCl-H69 line or non-SCLC NCl-H157 line were treated for 5 and 4 weeks, respectively, with somatostatin analogue RC-160 or various bombesin/GRP antagonists. RC-160, administered s.c. peritumorally at a dose of 100 micrograms per animal per day, inhibited the growth of H69 SCLC xenografts as shown by more than 70% reduction in tumour volumes and weights, as compared with the control group. Bombesin/GRP antagonists, RC-3440, RC-3095 and RC-3950-II, given s.c. peritumorally at a dose of 20 micrograms per animal per day, also inhibited the growth of H69 SCLC tumours. RC-3950-II had the greatest inhibitory effect and decreased tumour volume and weights by more than 80%. The growth of H-157 non-SCLC xenografts was significantly reduced by treatment with RC-160, but not with bombesin/GRP antagonist RC-3095. In mice bearing either tumour model, administration of RC-160 significantly decreased serum growth hormone and gastrin levels. Specific high-affinity receptors for bombesin and somatostatin were found on membranes of SCLC H69 tumours, but not on non-SCLC H157 tumours. Receptor analyses demonstrated high-affinity binding sites for epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) on the membranes of H69 and H157 tumours. EGF receptors were down-regulated on H69 tumours after treatment with RC-160 and bombesin/GRP antagonists. The concentration of binding sites for EGF and IGF-I on the H157 tumours was decreased after treatment with RC-160, but bombesin/GRP antagonist RC-3095 had no effect. These results demonstrate that bombesin/GRP antagonists inhibit the growth of H-69 SCLC, but not of H-157 non-SCLC xenografts in nude mice, whereas somatostatin analogue RC-160 is effective in both tumour models. This raises the possibility that these peptide analogues could be used selectively in the treatment of various subclasses of lung cancer. Topics: Amino Acid Sequence; Animals; Antineoplastic Agents; Binding Sites; Body Weight; Bombesin; Carcinoma, Non-Small-Cell Lung; Carcinoma, Small Cell; Cell Division; Gastrin-Releasing Peptide; Gastrins; Gonadotropin-Releasing Hormone; Growth Hormone; Humans; Lung Neoplasms; Male; Mice; Mice, Nude; Molecular Sequence Data; Neoplasm Transplantation; Peptide Fragments; Peptides; Receptors, Somatotropin; Somatostatin; Substrate Specificity; Transplantation, Heterologous | 1994 |