ganaxolone and tert-butylbicyclophosphorothionate

ganaxolone has been researched along with tert-butylbicyclophosphorothionate* in 2 studies

Other Studies

2 other study(ies) available for ganaxolone and tert-butylbicyclophosphorothionate

ArticleYear
Synthesis and in vitro activity of 3 beta-substituted-3 alpha-hydroxypregnan-20-ones: allosteric modulators of the GABAA receptor.
    Journal of medicinal chemistry, 1997, Jan-03, Volume: 40, Issue:1

    Two naturally occurring metabolites of progesterone, 3 alpha-hydroxy-5 alpha- and 5 beta-pregnan-20-one (1 and 2), are potent allosteric modulators of the GABAA receptor. Their therapeutic potential as anxiolytics, anticonvulsants, and sedative/hypnotics is limited by rapid metabolism. To avoid these shortcomings, a series of 3 beta-substituted derivatives of 1 and 2 was prepared. Small lipophilic groups generally maintain potency in both the 5 alpha- and 5 beta-series as determined by inhibition of [35S]TBPS binding. In the 5 alpha-series, 3 beta-ethyl, -propyl, -trifluoromethyl and -(benzyloxy)methyl, as well as substituents of the form 3 beta-XCH2, where X is Cl, Br, or I or contains unsaturation, show limited efficacy in inhibiting [35S]TBPS binding. In the 5 beta-series, the unsubstituted parent 2 is a two-component inhibitor, whereas all of the 3 beta-substituted derivatives of 2 inhibit TBPS via a single class of binding sites. In addition, all of the 3-substituted 5 beta-sterols tested are full inhibitors of [35S]TBPS binding. Electrophysiological measurements using alpha 1 beta 2 gamma 2L receptors expressed in oocytes show that 3 beta-methyl- and 3 beta-(azidomethyl)-3 alpha-hydroxy-5 alpha-pregnan-20-one (6 and 22, respectively) are potent full efficacy modulators and that 3 alpha-hydroxy-3 beta-(trifluoromethyl)-5 alpha-pregnan -20-one (24) is a low-efficacy modulator, confirming the results obtained from [35S]TBPS binding. These results indicate that modification of the 3 beta-position in 1 and 2 maintains activity at the neuroactive steroid site on the GABAA receptor. In animal studies, compound 6 (CCD 1042) is an orally active anticonvulsant, while the naturally occurring progesterone metabolites 1 and 2 are inactive when administered orally, suggesting that 3 beta-substitution slows metabolism of the 3-hydroxyl, resulting in orally bioavailable steroid modulators of the GABAA receptor.

    Topics: Animals; Anti-Anxiety Agents; Bridged Bicyclo Compounds, Heterocyclic; Convulsants; Desoxycorticosterone; Electrophysiology; Female; In Vitro Techniques; Models, Molecular; Oocytes; Rats; Receptors, GABA-A; Xenopus

1997
Characterization of the anticonvulsant properties of ganaxolone (CCD 1042; 3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one), a selective, high-affinity, steroid modulator of the gamma-aminobutyric acid(A) receptor.
    The Journal of pharmacology and experimental therapeutics, 1997, Volume: 280, Issue:3

    Ganaxolone (CCD 1042) is a 3beta-methyl-substituted analog of the endogenous neuroactive steroid 3alpha-hydroxy-5alpha-pregnan-20-one. Ganaxolone inhibited binding of the gamma-aminobutyric acid (GABA)A receptor-chloride channel ligand t-[35S]butylbicyclophosphorothionate (IC50 of 80 nM) and enhanced binding of the benzodiazepine site ligand [3H]flunitrazepam (EC50 of 125 nM) and the GABA site ligand [3H]muscimol (EC50 of 86 nM), consistent with activity as a positive allosteric modulator of the GABA(A) receptor. Electrophysiological recordings showed that, whereas nanomolar concentrations of ganaxolone potentiated GABA-evoked chloride currents in Xenopus oocytes expressing the human GABA(A) receptor subunits alpha1beta1gamma2L, alpha2beta1gamma2L or alpha3beta1gamma2L, direct activation of chloride flux occurred to a limited extent only at micromolar concentrations. Ganaxolone was effective in nontoxic doses against clonic convulsions induced by s.c. pentylenetetrazol administration in mice and rats (ED50 values of 4.3 and 7.8 mg/kg i.p., respectively). Ganaxolone also exhibited potent anticonvulsant activity against seizures induced by s.c. bicuculline (ED50 of 4.6 mg/kg i.p.), i.p. TBPS (ED50 of 11.7 mg/kg i.p.) and i.p. aminophylline (ED50 of 11.5 mg/kg i.p.) in mice. Although ganaxolone effectively blocked tonic seizures induced by maximal electroshock in mice (ED50 of 29.7 mg/kg i.p.), it did so only at doses that produced ataxia on the Rotorod (TD50 of 33.4 mg/kg i.p.). Conversely, ganaxolone was a potent anticonvulsant against fully kindled stage 5 seizures induced by corneal kindling in rats (ED50 of 4.5 mg/kg i.p.), producing these effects at doses well below those that resulted in ataxia (TD50 of 14.2 mg/kg i.p.). The seizure threshold, as determined by an increase in the dose of i.v. infused pentylenetetrazol required to induce clonus, was also significantly elevated by nontoxic doses of ganaxolone in mice. In summary, these data indicate that ganaxolone is a high-affinity, stereoselective, positive allosteric modulator of the GABA(A) receptor complex that exhibits potent anticonvulsant activity across a range of animal procedures. The profile of anticonvulsant activity obtained for ganaxolone supports clinical evaluation of this drug as an antiepileptic therapy with potential utility in the treatment of generalized absence seizures as well as simple and complex partial seizures.

    Topics: Animals; Anticonvulsants; Bridged Bicyclo Compounds, Heterocyclic; Cerebral Cortex; Flunitrazepam; GABA Modulators; Humans; In Vitro Techniques; Kindling, Neurologic; Mice; Pregnanolone; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Recombinant Proteins; Seizures

1997