gamma-sitosterol and hydroxysitosterol

gamma-sitosterol has been researched along with hydroxysitosterol* in 2 studies

Other Studies

2 other study(ies) available for gamma-sitosterol and hydroxysitosterol

ArticleYear
Vascular effects of oxysterols and oxyphytosterols in apoE -/- mice.
    Atherosclerosis, 2015, Volume: 240, Issue:1

    The aim of our study was to investigate vascular effects of oxysterols and oxyphytosterols on reactive oxygen species (ROS), endothelial progenitor cells, endothelial function and atherogenesis.. Male apoE-/-mice were treated with cholesterol, sitosterol, 7-ß-OH-cholesterol, 7-ß-OH-sitosterol, or cyclodextrin by daily intraperitoneal application. The respective concentrations in the plasma and in the arterial wall were determined by gas chromatography-flame ionization or mass spectrometry. ROS production was assessed by electron-spin resonance spectroscopy in the aorta, endothelial function of aortic rings and atherosclerosis in the aortic sinus was quantitated after 4 weeks.. Compared to vehicle, there was no difference in plasma cholesterol levels and arterial wall concentrations after i.p. application of cholesterol. 7-ß-OH-cholesterol concentrations were increased in the plasma (33.7±31.5 vs. 574.57.2±244.92 ng/ml) but not in the arterial wall (60.1±60.1 vs. 59.3±18.2 ng/mg). Sitosterol (3.39±0.96 vs. 8.16±4.11 mg/dL; 0.08±0.04 vs. 0.16±0.07 μg/mg, respectively) and 7-ß-OH-sitosterol concentrations (405.1±151.8 vs. 7497±3223 ng/ml; 0.24±0.13 vs. 16.82±11.58 ng/mg, respectively) increased in the plasma and in the aorta. The i.p-application of the non-oxidized cholesterol or sitosterol did not induce an increase of plasma oxysterols or oxyphytosterols concentrations. Oxidative stress in the aorta was increased in 7-ß-OH-sitosterol treated mice, but not in mice treated with cholesterol, sitosterol, or 7-ß-OH-cholesterol. Moreover, cholesterol, sitosterol, 7-ß-OH-cholesterol, and 7-ß-OH-sitosterol did not affect endothelial-dependent vasodilation, or early atherosclerosis.. Increased oxyphytosterol concentrations in plasma and arterial wall were associated with increased ROS production in aortic tissue, but did not affect endothelial progenitor cells, endothelial function, or early atherosclerosis.

    Topics: Animals; Aorta; Aortic Diseases; Apolipoproteins E; Atherosclerosis; Cell Movement; Cells, Cultured; Cholesterol; Cyclodextrins; Disease Models, Animal; Endothelial Progenitor Cells; Hydroxycholesterols; Male; Mice, Inbred C57BL; Mice, Knockout; Oxidative Stress; Reactive Oxygen Species; Sitosterols; Time Factors; Vasodilation

2015
Formation of C21 bile acids from plant sterols in the rat.
    The Journal of biological chemistry, 1990, May-15, Volume: 265, Issue:14

    Formation of bile acids from sitosterol in bile-fistulated female Wistar rats was studied with use of 4-14C-labeled sitosterol and sitosterol labeled with 3H in specific positions. The major part (about 75%) of the 14C radioactivity recovered as bile acids in bile after intravenous administration of [4-14C]sitosterol was found to be considerably more polar than cholic acid, and only trace amounts of radioactivity had chromatographic properties similar to those of cholic acid and chenodeoxycholic acid. It was shown that polar metabolites were formed by intermediate oxidation of the 3 beta-hydroxyl group (loss of 3H from 3 alpha-3H-labeled sitosterol) and that the most polar fraction did not contain a hydroxyl group at C7 (retention of 3H in 7 alpha,7 beta-3H2-labeled sitosterol). Furthermore, the polar metabolites had lost at least the terminal 6 or 7 carbon atoms of the side chain (loss of 3H from 22,23-3H2- and 24,28-3H2-labeled sitosterol). Experiments with 3H-labeled 7 alpha-hydroxysitosterol and 4-14C-labeled 26-hydroxysitosterol showed that none of these compounds was an efficient precursor to the polar metabolites. By analysis of purified most polar products of [4-14C] sitosterol by radio-gas chromatography and the same products of 7 alpha,7 beta-[2H2]sitosterol by combined gas chromatography-mass spectrometry, two major metabolites could be identified as C21 bile acids. One metabolite had three hydroxyl groups (3 alpha, 15, and unknown), and one had two hydroxyl groups (3 alpha, 15) and one keto group. Considerably less C21 bile acids were formed from [4-14C]sitosterol in male than in female Wistar rats. The C21 bile acids formed in male rats did not contain a 15-hydroxyl group. Conversion of a [4-14C]sitosterol into C21 bile acids did also occur in adrenalectomized and ovariectomized rats, indicating that endocrine tissues are not involved. Experiments with isolated perfused liver gave direct evidence that the overall conversion of sitosterol into C21 bile acids occurs in this organ. Intravenously injected 7 alpha,7 beta-3H-labeled campesterol gave a product pattern identical to that of 4-14C-labeled sitosterol. Possible mechanisms for hepatic conversion of sitosterol and campesterol into C21 bile acids are discussed.

    Topics: 3-alpha-Hydroxysteroid Dehydrogenase (B-Specific); 3-Hydroxysteroid Dehydrogenases; Animals; Bile; Bile Acids and Salts; Carbon Radioisotopes; Cholesterol; Chromatography, Gas; Chromatography, High Pressure Liquid; Female; Hydroxylation; Liver; Male; Mass Spectrometry; NAD; Oxidation-Reduction; Phytosterols; Rats; Rats, Inbred Strains; Sitosterols; Tritium

1990