gamma-cyclodextrin and fisetin

gamma-cyclodextrin has been researched along with fisetin* in 2 studies

Other Studies

2 other study(ies) available for gamma-cyclodextrin and fisetin

ArticleYear
Molecular insight into the inclusion of the dietary plant flavonol fisetin and its chromophore within a chemically modified γ-cyclodextrin: Multi-spectroscopic, molecular docking and solubility studies.
    Food chemistry, 2018, Sep-15, Volume: 260

    We explored the encapsulation of dietary plant flavonols fisetin and its chromophore 3-hydroxyflavone, within 2-hydroxypropyl-γ-cyclodextrin (HPγ-CDx) nano-cavity in aqueous solution using multi-spectroscopic approaches and molecular docking. Upon addition of HPγ-CDx, dramatic changes occur in the intrinsic 'two color' fluorescence behavior of the fluorophores. This is manifested by significant increase in the steady state fluorescence intensities, anisotropies, average fluorescence lifetimes and rotational correlation times. Furthermore, in the CDx environment, intrinsically achiral flavonols exhibit prominent induced circular dichroism bands. These findings indicate that the flavonol molecules spontaneously enter the relatively hydrophobic, chiral environment of the HPγ-CDx nano-cavities. Molecular docking computations corroborate the spectroscopic findings, and predict selectivity in orientation of the encapsulated flavonols. HPγ-CDx inclusion increases the aqueous solubility of individual flavonols ∼100-1000 times. The present study demonstrates that the hydroxypropyl substituent in γ-CDx controls the inclusion mode of the flavonols, leading to their enhanced solubilization and altered spectral signatures.

    Topics: Circular Dichroism; Flavonoids; Flavonols; Fluorescence; gamma-Cyclodextrins; Molecular Docking Simulation; Plants; Solubility; Water

2018
Contrasting binding of fisetin and daidzein in γ-cyclodextrin nanocavity.
    Journal of photochemistry and photobiology. B, Biology, 2013, Jan-05, Volume: 118

    Steady state and time resolved fluorescence along with anisotropy and induced circular dichroism (ICD) spectroscopy provide useful tools to observe and understand the behavior of the therapeutically important plant flavonoids fisetin and daidzein in γ-cyclodextrin (γ-CDx) nanocavity. Benesi-Hildebrand plots indicated 1:1 stoichiometry for both the supramolecular complexes. However, the mode of the binding of fisetin significantly differs from daidzein in γ-CDx, as is observed from ICD spectra which is further confirmed by docking studies. The interaction with γ-CDx proceeds mainly by the phenyl ring and partly by the chromone ring of fisetin whereas only the phenyl ring takes part for daidzein. A linear increase in the aqueous solubility of the flavonoids is assessed from the increase in the binding of the flavonoids with the γ-CDx cavity, which are determined by the gradual increase in the ICD signal, fluorescence emission as well as increase in fluorescence anisotropy with increasing (γ-CDx). This confirms γ-CDx as a nanovehicle for the flavonoids fisetin and daidzein in improving their bioavailability.

    Topics: Circular Dichroism; Flavonoids; Flavonols; Fluorescence Polarization; gamma-Cyclodextrins; Isoflavones; Molecular Docking Simulation; Spectrometry, Fluorescence

2013