galloylpaeoniflorin has been researched along with benzoylpaeoniflorin* in 2 studies
2 other study(ies) available for galloylpaeoniflorin and benzoylpaeoniflorin
Article | Year |
---|---|
Characterization and quantification of monoterpenoids in different types of peony root and the related Paeonia species by liquid chromatography coupled with ion trap and time-of-flight mass spectrometry.
Monoterpenoids with "cage-like" pinane skeleton are the unique and main bioactive constituents in peony root, the root of Paeonia lactiflora. A liquid chromatography coupled with ion trap and time-of-flight mass spectrometry (LC-IT-TOF-MS) method was developed for characterization and quantification of monoterpenoids in different types of peony root and the roots of related Paeonia species. MS/MS fragmentation patterns of monoterpenoids with paeoniflorin-, albiflorin- and sulfonated paeoniflorin-type of skeletons were elucidated, which provided basic clues enabling subsequent identification of 35 monoterpenoids in LC-MS profiles of Paeonia species. The profiling analysis and further quantification of 15 main monoterpenoids in 56 samples belonged to red peony root (RPR), white peony root (WPR), peony root in Japanese market (PR) and the roots of related Paeonia species revealed that paeoniflorin, benzoylpaeoniflorin, galloylpaeoniflorin, oxypaoniflorin and albiflorin were predominant constituents in all the samples; mudanpioside C was the characteristic component of P. lactiflora, and 4-O-methyl-paeoniflorin was only detected in P. veitchii and P. anomala. Total contents of the 15 monoterpenoids were obviously higher in the roots of P. lactiflora and P. veitchii than in those of P. anomala and P. japonica. Principal component analysis based on the quantitative results showed that the samples derived from P. lactiflora were clearly classified into RPR, WPR/PR, and sulfur-fumigated WPR groups, besides the respective group of P. veitchii and P. anomala. This study clarified the chemical characteristics of the respective type of peony root and the related Paeonia species, as well as the marker constituents for their discrimination. Topics: Bridged Bicyclo Compounds, Heterocyclic; Bridged-Ring Compounds; Chromatography, Liquid; Drugs, Chinese Herbal; Glucosides; Monoterpenes; Paeonia; Plant Roots; Tandem Mass Spectrometry | 2016 |
A novel method HPLC-DAD analysis of the Contentsof Moutan Cortexand Paeoniae Radix Alba with similar constituents-monoterpene glycosides in Guizhi Fuling Wan.
A variety of traditional Chinese medical formulations contain two or more herbs from the same genus or family. Although these herbs may have a similar appearance and constituents, they usually have different pharmacodynamic actions. A series of qualitative and quantitative analysis methods are developed to determine one or more compounds for quality control of medicine. As far as we know, no method has been found to determine the real ratio of the two herbs along with the prescription. In this study, we used HPLC-DAD as a way to determine the content of Moutan cortex (M) and Paeoniae radix alba (P) in GuizhiFuling Wan (GZFLW). An effective, accurate and reliable HPLC-DAD method was developed for detecting the content of M and P in GZFLW through the analysis of four monoterpeneglycosides, namely, galloylpaeoniflorin (1), paeoniflorin (2), mudanpioside C (3) and benzoylpaeoniflorin (4). Due to the different UV characteristics of the compounds, the detection wavelength was 270 nm for 1 and 2, while 3 and 4 were monitored at 254 nm and 230 nm, respectively. Four equations were put forward to describe the relationship between content of M as well as P and the four monoterpene glycosides in GZFLW. After validation, all the accuracies of the M and P contents in GZFLW were within 10%. The result showed that the method could be successfully applied to analyze the contents of M and P in GZFLW. Moreover, our method may be more widely used to control the quality of proprietary Chinese medicines, especially for those containing the same genus or family herbs, in industrial GMP production. Topics: Bridged Bicyclo Compounds, Heterocyclic; Chromatography, High Pressure Liquid; Drugs, Chinese Herbal; Glucosides; Glycosides; Medicine, Chinese Traditional; Monoterpenes; Paeonia; Plant Roots | 2014 |