Page last updated: 2024-08-24

gallocatechol and taxifolin

gallocatechol has been researched along with taxifolin in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (28.57)18.2507
2000's1 (14.29)29.6817
2010's2 (28.57)24.3611
2020's2 (28.57)2.80

Authors

AuthorsStudies
Calomme, M; Cimanga, K; Cos, P; Hu, JP; Pieters, L; Van Poel, B; Vanden Berghe, D; Vlietinck, AJ; Ying, L1
De Bruyne, T; De Clercq, E; Pieters, L; Vanden Berghe, D; Vlietinck, AJ; Witvrouw, M1
Katavic, PL; Lamb, K; Navarro, H; Prisinzano, TE1
Amić, D; Lucić, B1
Albiñana, CB; Brynda, J; Fanfrlík, J; Flieger, M; Hodek, J; Karlukova, E; Konvalinka, J; Kožíšek, M; Machara, A; Majer, P; Radilová, K; Weber, J; Zima, V1
Chen, XL; Mei, ZN; Shen, YX; Teng, HL; Yang, GZ1
Dergacheva, DI; Deryabina, YI; Gessler, NN; Isakova, EP; Klein, OI; Nikolaev, AV1

Other Studies

7 other study(ies) available for gallocatechol and taxifolin

ArticleYear
Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers.
    Journal of natural products, 1998, Volume: 61, Issue:1

    Topics: Enzyme Inhibitors; Flavonoids; Free Radical Scavengers; Structure-Activity Relationship; Xanthine Oxidase

1998
Biological evaluation of proanthocyanidin dimers and related polyphenols.
    Journal of natural products, 1999, Volume: 62, Issue:7

    Topics: Anthocyanins; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Antiviral Agents; Bacteria; Complement Inactivator Proteins; Euphorbiaceae; Flavonoids; Free Radical Scavengers; Hemolysis; Magnetic Resonance Spectroscopy; Microbial Sensitivity Tests; Peru; Phenols; Plants, Medicinal; Polymers; Simplexvirus

1999
Flavonoids as opioid receptor ligands: identification and preliminary structure-activity relationships.
    Journal of natural products, 2007, Volume: 70, Issue:8

    Topics: Flavonoids; Humans; Hypericum; Ligands; Narcotic Antagonists; Plants, Medicinal; Receptors, Opioid; Receptors, Opioid, kappa; Structure-Activity Relationship

2007
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics

2010
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors.
    European journal of medicinal chemistry, 2020, Dec-15, Volume: 208

    Topics: Antiviral Agents; Crystallography, X-Ray; Drug Evaluation, Preclinical; Endonucleases; Enzyme Assays; Enzyme Inhibitors; Flavonoids; Influenza A virus; Microbial Sensitivity Tests; Molecular Structure; Protein Binding; Protein Domains; RNA-Dependent RNA Polymerase; Structure-Activity Relationship; Viral Proteins

2020
A new chromone derivative from Berchemia lineata.
    Yao xue xue bao = Acta pharmaceutica Sinica, 2010, Volume: 45, Issue:9

    Topics: Catechin; Chromones; Flavanones; Flavonoids; Molecular Structure; Plant Roots; Plants, Medicinal; Quercetin; Rhamnaceae

2010
Influence of Natural Polyphenols on Isolated Yeast Dipodascus magnusii Mitochondria.
    Doklady. Biochemistry and biophysics, 2020, Volume: 490, Issue:1

    Topics: Antioxidants; Catechin; Flavonoids; Flavonols; Microbial Sensitivity Tests; Mitochondria; Oxygen Consumption; Polyphenols; Quercetin; Reactive Oxygen Species; Resveratrol; Saccharomycetales; Stilbenes

2020