Page last updated: 2024-08-24

gallocatechol and kaempferol

gallocatechol has been researched along with kaempferol in 12 studies

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (8.33)18.2507
2000's2 (16.67)29.6817
2010's7 (58.33)24.3611
2020's2 (16.67)2.80

Authors

AuthorsStudies
Calomme, M; Cimanga, K; Cos, P; Hu, JP; Pieters, L; Van Poel, B; Vanden Berghe, D; Vlietinck, AJ; Ying, L1
Brun, R; Lack, G; Perozzo, R; Rüedi, P; Scapozza, L; Tasdemir, D1
Amić, D; Lucić, B1
Kogami, Y; Matsuda, H; Nakamura, S; Sugiyama, T; Ueno, T; Yoshikawa, M1
Golonko, A; Lazny, R; Lewandowski, W; Pienkowski, T; Roszko, M; Swislocka, R1
Albiñana, CB; Brynda, J; Fanfrlík, J; Flieger, M; Hodek, J; Karlukova, E; Konvalinka, J; Kožíšek, M; Machara, A; Majer, P; Radilová, K; Weber, J; Zima, V1
Gutzeit, HO; Knölker, HJ; Martin, R; Richter, S1
Backlund, A; Bohlin, L; Gottfries, J; Larsson, J1
Goettert, M; Koch, P; Laufer, S; Merfort, I; Schattel, V1
Benedik, E; Podlipnik, C; Skrt, M; Ulrih, NP1
Czyzowska, A; Efenberger, M; Krala, L; Nowak, A1
Lin, H; Liu, Z; Zeng, C1

Reviews

1 review(s) available for gallocatechol and kaempferol

ArticleYear
Another look at phenolic compounds in cancer therapy the effect of polyphenols on ubiquitin-proteasome system.
    European journal of medicinal chemistry, 2019, Apr-01, Volume: 167

    Topics: Animals; Diet; Humans; Neoplasms; Phenols; Polyphenols; Proteasome Endopeptidase Complex; Ubiquitin

2019

Other Studies

11 other study(ies) available for gallocatechol and kaempferol

ArticleYear
Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers.
    Journal of natural products, 1998, Volume: 61, Issue:1

    Topics: Enzyme Inhibitors; Flavonoids; Free Radical Scavengers; Structure-Activity Relationship; Xanthine Oxidase

1998
Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids.
    Journal of medicinal chemistry, 2006, Jun-01, Volume: 49, Issue:11

    Topics: 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase; Alcohol Oxidoreductases; Animals; Antimalarials; Catechin; Cells, Cultured; Chloroquine; Drug Resistance; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH); Fatty Acids; Flavones; Flavonoids; Humans; Hydro-Lyases; Kinetics; Luteolin; Phenols; Plasmodium falciparum; Polyphenols; Structure-Activity Relationship

2006
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics

2010
Structural requirements of flavonoids for the adipogenesis of 3T3-L1 cells.
    Bioorganic & medicinal chemistry, 2011, May-01, Volume: 19, Issue:9

    Topics: 3T3-L1 Cells; Adipogenesis; Animals; CCAAT-Enhancer-Binding Protein-alpha; CCAAT-Enhancer-Binding Protein-beta; CCAAT-Enhancer-Binding Protein-delta; Deoxyglucose; Fatty Acid-Binding Proteins; Flavonoids; Glucose Transporter Type 4; Mice; PPAR gamma; Structure-Activity Relationship

2011
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors.
    European journal of medicinal chemistry, 2020, Dec-15, Volume: 208

    Topics: Antiviral Agents; Crystallography, X-Ray; Drug Evaluation, Preclinical; Endonucleases; Enzyme Assays; Enzyme Inhibitors; Flavonoids; Influenza A virus; Microbial Sensitivity Tests; Molecular Structure; Protein Binding; Protein Domains; RNA-Dependent RNA Polymerase; Structure-Activity Relationship; Viral Proteins

2020
In vitro and in vivo effects of inhibitors on actin and myosin.
    Bioorganic & medicinal chemistry, 2021, 01-15, Volume: 30

    Topics: Actins; Cell Movement; Cell Survival; Dose-Response Relationship, Drug; Humans; Kaempferols; Molecular Structure; Myosins; Quercetin; Structure-Activity Relationship; Tumor Cells, Cultured

2021
Expanding the ChemGPS chemical space with natural products.
    Journal of natural products, 2005, Volume: 68, Issue:7

    Topics: Biological Products; Combinatorial Chemistry Techniques; Computer Graphics; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Drug Evaluation, Preclinical; Molecular Structure; Prostaglandin-Endoperoxide Synthases; Structure-Activity Relationship

2005
Biological evaluation and structural determinants of p38α mitogen-activated-protein kinase and c-Jun-N-terminal kinase 3 inhibition by flavonoids.
    Chembiochem : a European journal of chemical biology, 2010, Dec-10, Volume: 11, Issue:18

    Topics: Animals; Flavonoids; Humans; Mitogen-Activated Protein Kinase 10; Mitogen-Activated Protein Kinase 14; Models, Molecular; Protein Kinase Inhibitors; Structure-Activity Relationship

2010
Binding of flavonoids to staphylococcal enterotoxin B.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2014, Volume: 74

    Topics: Binding Sites; Catechin; Enterotoxins; Flavonoids; Humans; Kaempferols; Molecular Docking Simulation; Molecular Structure; Monosaccharides; Receptors, Antigen, T-Cell; Spectrometry, Fluorescence

2014
Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products.
    Food microbiology, 2016, Volume: 59

    Topics: Animals; Catechin; Chromatography, High Pressure Liquid; Food Preservatives; Food Storage; Kaempferols; Meat Products; Microbial Consortia; Plant Extracts; Plant Leaves; Polyphenols; Prunus avium; Quercetin; Ribes; Swine

2016
Analysis of Young Shoots of 'Anji Baicha' (Camellia sinensis) at Three Developmental Stages Using Nontargeted LC-MS-Based Metabolomics.
    Journal of food science, 2019, Volume: 84, Issue:7

    Topics: Amino Acids; Camellia sinensis; Catechin; Chromatography, Liquid; Glutamates; Glycosides; Kaempferols; Metabolome; Metabolomics; Plant Leaves; Plant Shoots; Tandem Mass Spectrometry

2019