gallocatechol has been researched along with 1-anilino-8-naphthalenesulfonate in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (80.00) | 29.6817 |
2010's | 1 (20.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Tsuchiya, H | 1 |
Koo, SI; Noh, SK | 1 |
Ferruzzi, MG; Green, RJ; Murphy, AS; Schulz, B; Watkins, BA | 1 |
Bomser, JA; Cooper, BR; Ferruzzi, MG; Hopf, AS; Neilson, AP; Pereira, MA | 1 |
Hisamura, M; Kanetaka, T; Koga, K; Matsuo, Y; Tanaka, T; Yoshino, K | 1 |
1 review(s) available for gallocatechol and 1-anilino-8-naphthalenesulfonate
Article | Year |
---|---|
Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect.
Topics: Animals; Catechin; Intestinal Absorption; Lipase; Lipid Metabolism; Micelles; Pancreas; Phospholipases A; Rats; Tea | 2007 |
4 other study(ies) available for gallocatechol and 1-anilino-8-naphthalenesulfonate
Article | Year |
---|---|
Stereospecificity in membrane effects of catechins.
Topics: 1-Naphthylamine; 1,2-Dipalmitoylphosphatidylcholine; Anilino Naphthalenesulfonates; Catechin; Chromatography, High Pressure Liquid; Diphenylhexatriene; Flavonoids; Fluorescence Polarization; Fluorescent Dyes; Liposomes; Membrane Fluidity; Membranes, Artificial; Phosphatidylcholines; Stereoisomerism; Structure-Activity Relationship | 2001 |
Common tea formulations modulate in vitro digestive recovery of green tea catechins.
Topics: Animals; Beverages; Bile; Catechin; Chromatography, High Pressure Liquid; Citrus; Digestion; Drug Stability; Food Additives; Fruit; Hydrogen-Ion Concentration; In Vitro Techniques; Lipase; Milk; Oryza; Pancreatin; Pepsin A; Soy Milk; Tea | 2007 |
Catechin degradation with concurrent formation of homo- and heterocatechin dimers during in vitro digestion.
Topics: Catechin; Digestion; Dimerization; In Vitro Techniques; Lipase; Oxidation-Reduction; Pancreatin; Pepsin A | 2007 |
Proanthocyanidin oligomers isolated from Salacia reticulata leaves potently inhibit pancreatic lipase activity.
Topics: Catechin; Inhibitory Concentration 50; Lipase; Pancreas; Plant Leaves; Plant Stems; Polyphenols; Proanthocyanidins; Salacia; Tea | 2013 |