gabapentin and diazoxide

gabapentin has been researched along with diazoxide in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's5 (62.50)29.6817
2010's3 (37.50)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Lombardo, F; Obach, RS; Waters, NJ1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Chang, G; El-Kattan, A; Miller, HR; Obach, RS; Rotter, C; Steyn, SJ; Troutman, MD; Varma, MV1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Hogan, Q; Kwok, WM; McCallum, B; Sapunar, D; Sarantopoulos, C1
Flores-Murrieta, FJ; Granados-Soto, V; Mixcoatl-Zecuatl, T1

Reviews

1 review(s) available for gabapentin and diazoxide

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

7 other study(ies) available for gabapentin and diazoxide

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
    Journal of medicinal chemistry, 2010, Feb-11, Volume: 53, Issue:3

    Topics: Administration, Oral; Biological Availability; Humans; Intestinal Absorption; Pharmaceutical Preparations

2010
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
ATP-sensitive potassium channels in rat primary afferent neurons: the effect of neuropathic injury and gabapentin.
    Neuroscience letters, 2003, Jun-12, Volume: 343, Issue:3

    Topics: Acetates; Amines; Animals; ATP-Binding Cassette Transporters; Basal Ganglia; Cyclohexanecarboxylic Acids; Diazoxide; Excitatory Amino Acid Antagonists; Gabapentin; gamma-Aminobutyric Acid; Ganglia, Spinal; Glyburide; KATP Channels; Male; Neurons, Afferent; Neuroprotective Agents; Pain; Peripheral Nervous System Diseases; Pinacidil; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Inwardly Rectifying; Rats; Rats, Sprague-Dawley

2003
The nitric oxide-cyclic GMP-protein kinase G-K+ channel pathway participates in the antiallodynic effect of spinal gabapentin.
    European journal of pharmacology, 2006, Feb-15, Volume: 531, Issue:1-3

    Topics: Amines; Analgesics; Animals; Apamin; Carbazoles; Charybdotoxin; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Cyclohexanecarboxylic Acids; Diazoxide; Dose-Response Relationship, Drug; Enzyme Inhibitors; Female; Gabapentin; gamma-Aminobutyric Acid; Glyburide; Indazoles; Indoles; Injections, Spinal; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Okadaic Acid; Oxadiazoles; Pain; Pinacidil; Potassium Channel Blockers; Potassium Channels; Protein Kinase Inhibitors; Quinoxalines; Rats; Rats, Wistar; Signal Transduction; Spinal Nerves; Stereoisomerism; Time Factors; Vasodilator Agents

2006