g(m2)-ganglioside and migalastat

g(m2)-ganglioside has been researched along with migalastat* in 3 studies

Other Studies

3 other study(ies) available for g(m2)-ganglioside and migalastat

ArticleYear
Therapeutic effects of stem cells and substrate reduction in juvenile Sandhoff mice.
    Neurochemical research, 2012, Volume: 37, Issue:6

    Sandhoff Disease (SD) involves the CNS accumulation of ganglioside GM2 and asialo-GM2 (GA2) due to inherited defects in the β-subunit gene of β-hexosaminidase A and B (Hexb gene). Substrate reduction therapy, utilizing imino sugar N-butyldeoxygalactonojirimycin (NB-DGJ), reduces ganglioside biosynthesis and levels of stored GM2 in SD mice. Intracranial transplantation of Neural Stem Cells (NSCs) can provide enzymatic cross correction, to help reduce ganglioside storage and extend life. Here we tested the effect of NSCs and NB-DGJ, alone and together, on brain β-hexosaminidase activity, GM2, and GA2 content in juvenile SD mice. The SD mice received either cerebral NSC transplantation at post-natal day 0 (p-0), intraperitoneal injection of NB-DGJ (500 mg/kg/day) from p-9 to p-15, or received dual treatments. The brains were analyzed at p-15. β-galactosidase staining confirmed engraftment of lacZ-expressing NSCs in the cerebral cortex. Compared to untreated and sham-treated SD controls, NSC treatment alone provided a slight increase in Hex activity and significantly decreased GA2 content. However, NSCs had no effect on GM2 content when analyzed at p-15. NB-DGJ alone had no effect on Hex activity, but significantly reduced GM2 and GA2 content. Hex activity was slightly elevated in the NSC + drug-treated mice. GM2 and GA2 content in the dual treated mice were similar to that of the NB-DGJ treated mice. These data indicate that NB-DGJ alone was more effective in targeting storage in juvenile SD mice than were NSCs alone. No additive or synergistic effect between NSC and drug was found in these juvenile SD mice.

    Topics: 1-Deoxynojirimycin; Animals; beta-N-Acetylhexosaminidases; G(M2) Ganglioside; Hexosaminidase B; Mice; Neural Stem Cells; Sandhoff Disease

2012
Restricted ketogenic diet enhances the therapeutic action of N-butyldeoxynojirimycin towards brain GM2 accumulation in adult Sandhoff disease mice.
    Journal of neurochemistry, 2010, Volume: 113, Issue:6

    Sandhoff disease is an autosomal recessive, neurodegenerative disease involving the storage of brain ganglioside GM2 and asialo-GM2. Previous studies showed that caloric restriction, which augments longevity, and N-butyldeoxynojirimycin (NB-DNJ, Miglustat), an imino sugar that hinders the glucosyltransferase catalyzing the first step in glycosphingolipid biosynthesis, both increase longevity and improve motor behavior in the beta-hexosaminidase (Hexb) knockout (-/-) murine model of Sandhoff disease. In this study, we used a restricted ketogenic diet (KD-R) and NB-DNJ to combat ganglioside accumulation. Adult Hexb-/- mice were placed into one of the following groups: (i) a standard diet (SD), (ii) a SD with NB-DNJ (SD + NB-DNJ), (iii) a KD-R, and (iv) a KD-R with NB-DNJ (KD-R + NB-DNJ). Forebrain GM2 content (mug sialic acid/100 mg dry wt) in the four groups was 375 +/- 15, 312 +/- 8, 340 +/- 28, and 279 +/- 26, respectively, indicating an additive interaction between NB-DNJ and the KD-R. Most interestingly, brain NB-DNJ content was 3.5-fold greater in the KD-R + NB-DNJ mice than in the SD + NB-DNJ mice. These data suggest that the KD-R and NB-DNJ may be a potential combinatorial therapy for Sandhoff disease by enhancing NB-DNJ delivery to the brain and may allow lower dosing to achieve the same degree of efficacy as high dose monotherapy.

    Topics: 1-Deoxynojirimycin; 3-Hydroxybutyric Acid; Analysis of Variance; Animals; beta-N-Acetylhexosaminidases; Blood Glucose; Body Weight; Brain; Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Diet, Ketogenic; Eating; G(M2) Ganglioside; Lipid Metabolism; Mice; Mice, Knockout; Myelin Sheath; Purkinje Cells; Sandhoff Disease

2010
N-butyldeoxygalactonojirimycin reduces brain ganglioside and GM2 content in neonatal Sandhoff disease mice.
    Neurochemistry international, 2008, Volume: 52, Issue:6

    Sandhoff disease involves the CNS accumulation of ganglioside GM2 and asialo-GM2 (GA2) due to inherited defects in the beta-subunit gene of beta-hexosaminidase A and B (Hexb gene). Accumulation of these glycosphingolipids (GSLs) produces progressive neurodegeneration, ultimately leading to death. Substrate reduction therapy (SRT) aims to decrease the rate of glycosphingolipid (GSL) biosynthesis to compensate for the impaired rate of catabolism. The imino sugar, N-butyldeoxygalactonojirimycin (NB-DGJ) inhibits the first committed step in GSL biosynthesis. NB-DGJ treatment, administered from postnatal day 2 (p-2) to p-5 (600 mg/kg/day)), significantly reduced total brain ganglioside and GM2 content in the Sandhoff disease (Hexb(-/-)) mice, but did not reduce the content of GA2. We also found that NB-DGJ treatment caused a slight, but significant elevation in brain sialidase activity. The drug had no adverse effects on viability, body weight, brain weight, or brain water content in the mice. No significant alterations in neutral lipids or acidic phospholipids were observed in the NB-DGJ-treated Hexb(-/-) mice. Our results show that NB-DGJ is effective in reducing total brain ganglioside and GM2 content at early neonatal ages.

    Topics: 1-Deoxynojirimycin; Animals; Animals, Newborn; beta-Hexosaminidase alpha Chain; Brain; Brain Chemistry; Disease Models, Animal; Down-Regulation; G(M2) Ganglioside; Gangliosides; Glycosphingolipids; Mice; Mice, Knockout; Nerve Degeneration; Neuraminidase; Sandhoff Disease; Treatment Outcome

2008