g(m1)-ganglioside has been researched along with 1-2-dilauroylphosphatidylcholine* in 3 studies
3 other study(ies) available for g(m1)-ganglioside and 1-2-dilauroylphosphatidylcholine
Article | Year |
---|---|
Characterization of physical properties of supported phospholipid membranes using imaging ellipsometry at optical wavelengths.
Subnanometer-scale vertical z-resolution coupled with large lateral area imaging, label-free, noncontact, and in situ advantages make the technique of optical imaging ellipsometry (IE) highly suitable for quantitative characterization of lipid bilayers supported on oxide substrates and submerged in aqueous phases. This article demonstrates the versatility of IE in quantitative characterization of structural and functional properties of supported phospholipid membranes using previously well-characterized examples. These include 1), a single-step determination of bilayer thickness to 0.2 nm accuracy and large-area lateral uniformity using photochemically patterned single 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayers; 2), hydration-induced spreading kinetics of single-fluid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers to illustrate the in situ capability and image acquisition speed; 3), a large-area morphological characterization of phase-separating binary mixtures of 1,2-dilauroyl-sn-glycero-3-phosphocholine and galactosylceramide; and 4), binding of cholera-toxin B subunits to GM1-incorporating bilayers. Additional insights derived from these ellipsometric measurements are also discussed for each of these applications. Agreement with previous studies confirms that IE provides a simple and convenient tool for a routine, quantitative characterization of these membrane properties. Our results also suggest that IE complements more widely used fluorescence and scanning probe microscopies by combining large-area measurements with high vertical resolution without the use of labeled lipids. Topics: Cholera Toxin; Dimyristoylphosphatidylcholine; G(M1) Ganglioside; Galactosylceramides; Lipid Bilayers; Microscopy; Phase Transition; Phosphatidylcholines | 2007 |
Degradation of dilauroylphosphatidylcholine by phospholipase A2 in monolayers containing glycosphingolipids.
The ability of phospholipase A2 from porcine pancreas to degrade all of the available dilauroylphosphatidylcholine in mixed monolayers with galactocerebroside, sulfatide, or ganglioside GM1 was investigated at different constant surface pressures. Under the conditions used the interfacial glycosphingolipid composition was continuously enriched as the enzyme action proceeded. The total percentage of phospholipid degradation depends on the surface pressure and on the type of glycosphingolipid. The presence of sulfatide activates the enzyme while galactocerebroside and ganglioside GM1 are inhibitory. The extent of phospholipid hydrolysis is independent of the effect of glycosphingolipids on the enzyme velocity. This is so when the latter is measured either in conditions of constant glycosphingolipid composition and zero-order kinetics [Bianco, I.D., Fidelio, G.D., & Maggio, B. (1989) Biochem. J. 258, 95-99] or under variable surface composition as in the present work. The modulation of phospholipase A2 activity by glycosphingolipids operates at two independent levels. One controls the rate of enzyme activity, and the other modulates the total extent of substrate degradation. This depends on the initial interaction of the enzyme with the interface. The glycosphingolipid effect on the activity is different depending on whether the enzyme has access to the substrate from the subphase or is already adsorbed to the lipid interface. Topics: Animals; G(M1) Ganglioside; Glycosphingolipids; Kinetics; Liposomes; Models, Theoretical; Pancreas; Phosphatidylcholines; Phospholipases A; Phospholipases A2; Swine | 1991 |
Modulation of phospholipase A2 activity by neutral and anionic glycosphingolipids in monolayers.
The effect of neutral (galactocerebroside and asialo-ganglioside GM1) or anionic (sulphatide and gangliosides GM1, GD1a and GT1b) glycosphingolipids on the activity of phospholipase A2 from pig pancreas was studied in mixed monolayers of dilauroyl phosphatidylcholine with the glycosphingolipids in different molar fractions at various constant surface pressures. The activity of the enzyme depends on the proportion and type of glycosphingolipid in the interface. Sulphatide activates the enzyme at all proportions, whereas galactocerebroside shows inhibition or activation depending on its proportion in the film. Asialo-ganglioside GM1 and gangliosides GM1, GD1a and GT1b can strongly inhibit the enzyme at relatively low molar fractions in the film in the following order: asialo-ganglioside GM1 less than ganglioside GM1 less than ganglioside GT1b less than ganglioside GD1a. The changes of activity are not due to a direct action of the lipids on the active centre or interfacial recognition region of the enzyme. Topics: Animals; Enzyme Activation; G(M1) Ganglioside; Galactosylceramides; Gangliosides; Glycosphingolipids; Pancreas; Phosphatidylcholines; Phospholipases; Phospholipases A; Phospholipases A2; Swine | 1989 |