fusarenon-x and deoxynivalenol-3-glucoside

fusarenon-x has been researched along with deoxynivalenol-3-glucoside* in 2 studies

Other Studies

2 other study(ies) available for fusarenon-x and deoxynivalenol-3-glucoside

ArticleYear
Development and Validation of an Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Determination of Four Type B Trichothecenes and Masked Deoxynivalenol in Various Feed Products.
    Molecules (Basel, Switzerland), 2016, Jun-08, Volume: 21, Issue:6

    A reliable and sensitive analytical method was developed for simultaneous determination of deoxynivalenol(DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FUS-X), and masked deoxynivalenol (deoxynivalenol-3-glucoside, D3G) in formula feed, concentrated feed, and premixed feed products. The method was based on an improved sample pretreatment with the commercially available HLB cartridges used for sample purification and enrichment followed by analysis using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Several key parameters including the extraction solvents, the positions of sample loading solvents, washing and elution solvents for HLB cartridges were carefully optimized to achieve optimal extraction and purification efficiencies. The established method was extensively validated by determining the linearity (R² ≥ 0.99), sensitivity (limit of quantification in the range of 0.08-4.85 μg/kg), recovery (79.3%-108.1%), precision (Intra-day RSDs ≤ 13.5% and Inter-day RSDs ≤ 14.9%), and then was successfully applied to determine the four type B trichothecenes and D3G in a total of 31 feed samples. Among them, 26 were contaminated with various mycotoxins at the levels of 2.1-864.5 μg/kg, and D3G has also been detected in 17 samples with the concentrations in the range of 2.1-34.8 μg/kg, proving the established method to be a valuable tool for type B trichothecenes and masked DON monitoring in complex feed matrices.

    Topics: Chromatography, Liquid; Food Analysis; Glucosides; Humans; Mycotoxins; Tandem Mass Spectrometry; Trichothecenes

2016
Genotyping and phenotyping of Fusarium graminearum isolates from Germany related to their mycotoxin biosynthesis.
    International journal of food microbiology, 2011, Nov-15, Volume: 151, Issue:1

    Fusarium graminearum is the most important pathogen causing Fusarium head blight (FHB) of small cereal grains worldwide responsible for quantitative and qualitative yield losses. The presence in crops is often associated with mycotoxin contamination of foodstuff limiting its use for human and animal consumption. A collection of isolates of F. graminearum from Germany was characterized genetically and chemically for their potential to produce the B trichothecenes deoxynivalenol (DON) and nivalenol (NIV). Molecular methods with eight PCR assays were implemented based on functional Tri7 and Tri13 genes and on the tri5-tri6 intergenic region to differentiate between chemotaxonomic groups DON and NIV, resulting in a marked majority (61/63) of DON chemotypes. Mycotoxins produced on rice kernels were quantified by means of LC-MSMS including DON, NIV, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON), DON-3-glucoside, fusarenon X, as well as zearalenone; all of them proving to be present in high concentration among the isolates. All DON-chemotype isolates also produced lower amounts of NIV with the amount being positively correlated (R²=0.89) to the DON amount. 15-ADON and 3-ADON are reported to be produced simultaneously by the isolates, the former dominating over the latter in all but one isolate. Fungal biomass, was quantified via ergosterol amount on rice. It was used to calculate specific mycotoxin production per biomass of isolates, ranging from 0.104 to 1.815mg DON mg-1 ergosterol, presenting a Gaussian distribution. Genotype and phenotype characterization revealed discrepancies with respect to mycotoxin production potential of the fungi, i.e. isolates from one chemotype were able to produce mycotoxins from other chemotypes in considerable amounts.

    Topics: DNA, Fungal; Ergosterol; Fusarium; Genotype; Germany; Glucosides; Oryza; Phenotype; Polymerase Chain Reaction; Trichothecenes; Zearalenone

2011