fumarates and sulforaphane

fumarates has been researched along with sulforaphane* in 3 studies

Other Studies

3 other study(ies) available for fumarates and sulforaphane

ArticleYear
Validation of the multiple sensor mechanism of the Keap1-Nrf2 system.
    Free radical biology & medicine, 2012, Aug-15, Volume: 53, Issue:4

    The Keap1-Nrf2 system plays a critical role in cellular defense against electrophiles and reactive oxygen species. Keap1 possesses a number of cysteine residues, some of which are highly reactive and serves as sensors for these insults. Indeed, point mutation of Cys151 abrogates the response to certain electrophiles. However, this mutation does not affect the other set of electrophiles, suggesting that multiple sensor systems reside within the cysteine residues of Keap1. The precise contribution of each reactive cysteine to the sensor function of Keap1 remains to be clarified. To elucidate the contribution of Cys151 in vivo, in this study we adopted transgenic complementation rescue assays. Embryonic fibroblasts and primary peritoneal macrophages were prepared from mice expressing the Keap1-C151S mutant. These cells were challenged with various Nrf2 inducers. We found that some of the inducers triggered only marginal responses in Keap1-C151S-expressing cells, while others evoked responses in a comparable magnitude to those observed in the wild-type cells. We found that tert-butyl hydroquinone, diethylmaleate, sulforaphane, and dimethylfumarate were Cys151 preferable, whereas 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PG-J(2)), 2-cyano-3,12 dioxooleana-1,9 diene-28-imidazolide (CDDO-Im), ebselen, nitro-oleic acid, and cadmium chloride were Cys151 independent. Experiments with embryonic fibroblasts and primary macrophages yielded consistent results. Experiments testing protective effects against the cytotoxicity of 1-chloro-2,4-dinitrobenzene of sulforaphane and 15d-PG-J(2) in Keap1-C151S-expressing macrophages revealed that the former inducer was effective, while the latter was not. These results thus indicate that there exists distinct utilization of Keap1 cysteine residues by different chemicals that trigger the response of the Keap1-Nrf2 system, and further substantiate the notion that there are multiple sensing mechanisms within Keap1 cysteine residues.

    Topics: Adaptor Proteins, Signal Transducing; Amino Acid Substitution; Animals; Antioxidants; Azoles; Cytoskeletal Proteins; Dimethyl Fumarate; Fumarates; Gene Expression; Gene Expression Regulation; Glutamate-Cysteine Ligase; HEK293 Cells; Humans; Hydroquinones; Imidazoles; Isoindoles; Isothiocyanates; Kelch-Like ECH-Associated Protein 1; Macrophages, Peritoneal; Maleates; Mice; Mice, Transgenic; NAD(P)H Dehydrogenase (Quinone); NF-E2-Related Factor 2; Oleanolic Acid; Organoselenium Compounds; Oxidants; Oxidative Stress; Sulfoxides; Transcriptional Activation

2012
Modest induction of phase 2 enzyme activity in the F-344 rat prostate.
    BMC cancer, 2006, Mar-15, Volume: 6

    Prostate cancer is the most commonly diagnosed malignancy in men and is thought to arise as a result of endogenous oxidative stress in the face of compromised carcinogen defenses. We tested whether carcinogen defense (phase 2) enzymes could be induced in the prostate tissues of rats after oral feeding of candidate phase 2 enzyme inducing compounds.. Male F344 rats were gavage fed sulforaphane, beta-naphthoflavone, curcumin, dimethyl fumarate or vehicle control over five days, and on the sixth day, prostate, liver, kidney and bladder tissues were harvested. Cytosolic enzyme activities of nicotinamide quinone oxidoreductase (NQO1), total glutathione transferase (using DCNB) and mu-class glutathione transferase (using CDNB) were determined in the treated and control animals and compared.. In prostatic tissues, sulforaphane produced modest but significant increases in the enzymatic activities of NQO1, total GST and GST-mu compared to control animals. beta-naphthoflavone significantly increased NQO1 and GST-mu activities and curcumin increased total GST and GST-mu enzymatic activities. Dimethyl fumarate did not significantly increase prostatic phase 2 enzyme activity. Compared to control animals, sulforaphane also significantly induced NQO1 or total GST enzyme activity in the liver, kidney and, most significantly, in the bladder tissues. All compounds were well tolerated over the course of the gavage feedings.. Orally administered compounds will induce modestly phase 2 enzyme activity in the prostate although the significance of this degree of induction is unknown. The 4 different compounds also altered phase 2 enzyme activity to different degrees in different tissue types. Orally administered sulforaphane potently induces phase 2 enzymes in bladder tissues and should be investigated as a bladder cancer preventive agent.

    Topics: Animals; Anticarcinogenic Agents; beta-Naphthoflavone; Curcumin; Dimethyl Fumarate; Fumarates; Glutathione Transferase; Isothiocyanates; Kidney; Liver; Male; NAD(P)H Dehydrogenase (Quinone); Prostate; Rats; Rats, Inbred F344; Sulfoxides; Thiocyanates; Urinary Bladder

2006
Detoxication enzyme inducers modify cytokine production in rat mixed glial cells.
    Journal of neuroimmunology, 2005, Volume: 166, Issue:1-2

    Pro-inflammatory cytokines, e.g. interleukin-1beta (IL-1beta), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNFalpha) as well as neurotoxic molecules such as nitric oxide (NO), that are produced and released by activated glial cells, play an important role in inflammation and oxidative stress occurring during Multiple Sclerosis (MS). Reduction of these processes could therefore be of therapeutic interest. Dimethylfumarate (DMF) and sulforaphane (SP) are well known for their detoxicating properties. Furthermore, they have anti-inflammatory effects as shown clinically by the treatment of inflammatory skin diseases. However, their detoxication and anti-inflammatory action on brain-derived cells is unknown. In the present study we have studied, within the same concentration range, the anti-inflammatory and detoxicating effects of DMF and SP on the production and release of mediators of inflammation and detoxication from lipopolysaccharide (LPS) activated primary co-cultures of rat microglial and astroglial cells. DMF and SP attenuated the LPS-induced production and release of TNFalpha, IL-1beta, IL-6 and NO. In addition, DMF and SP increase both mRNA level and activity of NAD(P)H:quinone reductase (NQO-1), a detoxication enzyme, as well as the cellular glutathione content. We conclude that DMF or SP simultaneously can (1) reduce mediators of inflammation and (2) enhance detoxication enzymes in LPS stimulated co-cultures of astroglial and microglial cells. This double-sided effect could potentially be of therapeutic interest.

    Topics: Animals; Cells, Cultured; Cytokines; Dimethyl Fumarate; Enzyme Induction; Fumarates; Glutathione; Interleukin-1; Interleukin-6; Isothiocyanates; NAD(P)H Dehydrogenase (Quinone); Neuroglia; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitrites; Rats; Rats, Wistar; RNA, Messenger; Sulfoxides; Thiocyanates; Time Factors; Tissue Distribution; Tumor Necrosis Factor-alpha

2005