fumarates has been researched along with malic-acid* in 178 studies
5 review(s) available for fumarates and malic-acid
Article | Year |
---|---|
Metabolic engineering of carbon and redox flow in the production of small organic acids.
The review describes efforts toward metabolic engineering of production of organic acids. One aspect of the strategy involves the generation of an appropriate amount and type of reduced cofactor needed for the designed pathway. The ability to capture reducing power in the proper form, NADH or NADPH for the biosynthetic reactions leading to the organic acid, requires specific attention in designing the host and also depends on the feedstock used and cell energetic requirements for efficient metabolism during production. Recent work on the formation and commercial uses of a number of small mono- and diacids is discussed with redox differences, major biosynthetic precursors and engineering strategies outlined. Specific attention is given to those acids that are used in balancing cell redox or providing reduction equivalents for the cell, such as formate, which can be used in conjunction with metabolic engineering of other products to improve yields. Since a number of widely studied acids derived from oxaloacetate as an important precursor, several of these acids are covered with the general strategies and particular components summarized, including succinate, fumarate and malate. Since malate and fumarate are less reduced than succinate, the availability of reduction equivalents and level of aerobiosis are important parameters in optimizing production of these compounds in various hosts. Several other more oxidized acids are also discussed as in some cases, they may be desired products or their formation is minimized to afford higher yields of more reduced products. The placement and connections among acids in the typical central metabolic network are presented along with the use of a number of specific non-native enzymes to enhance routes to high production, where available alternative pathways and strategies are discussed. While many organic acids are derived from a few precursors within central metabolism, each organic acid has its own special requirements for high production and best compatibility with host physiology. Topics: Carbon; Formates; Fumarates; Malates; Metabolic Engineering; Metabolic Networks and Pathways; Oxidation-Reduction; Propionates; Succinic Acid | 2015 |
Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects.
Various economic and environmental sustainability concerns as well as consumer preference for bio-based products from natural sources have paved the way for the development and expansion of biorefining technologies. These involve the conversion of renewable biomass feedstock to fuels and chemicals using biological systems as alternatives to petroleum-based products. Filamentous fungi possess an expansive portfolio of products including the multifunctional organic acids itaconic, fumaric, and malic acids that have wide-ranging current applications and potentially addressable markets as platform chemicals. However, current bioprocessing technologies for the production of these compounds are mostly based on submerged fermentation, which necessitates physicochemical pretreatment and hydrolysis of lignocellulose biomass to soluble fermentable sugars in liquid media. This review will focus on current research work on fungal production of itaconic, fumaric, and malic acids and perspectives on the potential application of solid-state fungal cultivation techniques for the consolidated hydrolysis and organic acid fermentation of lignocellulosic biomass. Topics: Biomass; Carbohydrate Metabolism; Fermentation; Fumarates; Fungi; Hydrolysis; Lignin; Malates; Succinates | 2015 |
Fumarate: Multiple functions of a simple metabolite.
Although much is now known about fumarate metabolism, our knowledge of some aspects of its biological function remain far from comprehensive. In this short review we begin with an introductory overview of the role of fumarate in both plant and non-plant systems. We next highlight the relative importance of fumarate in relation to cell type and circumstance in contrast to other chemically similar organic acids. Considerable cumulative evidence is suggestive of a role for fumarate in pH regulation during nitrate assimilation and that fumarate has similar effects as malate during stomatal movement. Indeed it is currently difficult to separate the biological function of fumarate from malate under certain circumstances. However, in other cases this can be easily performed. This physiological complexity notwithstanding it remains possible that the engineering of fumarate metabolism may provide opportunities to improve plant growth and performance. Topics: Fumarates; Hydrogen-Ion Concentration; Malates; Mitochondria; Nitrates; Plant Stomata; Plants; Signal Transduction | 2011 |
Control of stomatal aperture: a renaissance of the old guard.
Stomata, functionally specialized small pores on the surfaces of leaves, regulate the flow of gases in and out of plants. The pore is opened by an increase in osmotic pressure in the guard cells, resulting in the uptake of water. The subsequent increase in cell volume inflates the guard cell and culminates with the opening of the pore. Although guard cells can be regarded as one of the most thoroughly investigated cell types, our knowledge of the signaling pathways which regulate guard cell function remains fragmented. Recent research in guard cells has led to several new hypotheses, however, it is still a matter of debate as to whether guard cells function autonomously or are subject to regulation by their neighboring mesophyll cells.This review synthesizes what is known about the mechanisms and genes critical for modulating stomatal movement. Recent progress on the regulation of guard cell function is reviewed here including the involvement of environmental signals such as light, the concentration of atmospheric CO2 and endogenous plant hormones. In addition we re-evaluate the important role of organic acids such as malate and fumarate play in guard cell metabolism in this process. Topics: Carbon Dioxide; Fumarates; Light; Malates; Plant Stomata; Signal Transduction | 2011 |
Production of multifunctional organic acids from renewable resources.
Recently, the microbial production of multifunctional organic acid has received interest due to their increased use in the food industry and their potential as raw materials for the manufacture of biodegradable polymers. Certain species of microorganisms produce significant quantities of organic acids in high yields under specific cultivation conditions from biomass-derived carbohydrates. The accumulation of some acids, such as fumaric, malic and succinic acid, are believed to involve CO2-fixation which gives high yields of products. The application of special fermentation techniques and the methods for downstream processing of products are described. Techniques such as simultaneous fermentation and product recovery and downstream processing are likely to occupy an important role in the reduction of production costs. Finally, some aspects of process design and current industrial production processes are discussed. Topics: Aspartic Acid; Carboxylic Acids; Citric Acid; Conservation of Natural Resources; Fermentation; Fumarates; Lactic Acid; Malates; Succinates | 1999 |
1 trial(s) available for fumarates and malic-acid
Article | Year |
---|---|
Plasma levels of carboxylic acids are markers of early kidney dysfunction in young people with type 1 diabetes.
We compared plasma metabolites of amino acid oxidation and the tricarboxylic acid (TCA) cycle in youth with and without type 1 diabetes mellitus (T1DM) and related the metabolites to glomerular filtration rate (GFR), renal plasma flow (RPF), and albuminuria. Metabolites associated with impaired kidney function may warrant future study as potential biomarkers or even future interventions to improve kidney bioenergetics.. Metabolomic profiling of fasting plasma samples using a targeted panel of 644 metabolites and an untargeted panel of 19,777 metabolites was performed in 50 youth with T1DM ≤ 10 years and 20 controls. GFR and RPF were ascertained by iohexol and p-aminohippurate clearance, and albuminuria calculated as urine albumin to creatinine ratio. Sparse partial least squares discriminant analysis and moderated t tests were used to identify metabolites associated with GFR and RPF.. In conclusion, adolescents with relatively short T1DM duration exhibited lower plasma levels of carboxylic acids that associated with hyperfiltration and hyperperfusion.. ClinicalTrials.gov NCT03618420 and NCT03584217 A higher resolution version of the Graphical abstract is available as Supplementary information. Topics: Adolescent; Albuminuria; Carboxylic Acids; Diabetes Mellitus, Type 1; Fumarates; Glomerular Filtration Rate; Glycine; Histidine; Humans; Kidney; Malates; Phenylalanine; Renal Insufficiency | 2023 |
172 other study(ies) available for fumarates and malic-acid
Article | Year |
---|---|
Metabolic engineering of Mannheimia succiniciproducens for malic acid production using dimethylsulfoxide as an electron acceptor.
Microbial production of various TCA intermediates and related chemicals through the reductive TCA cycle has been of great interest. However, rumen bacteria that naturally possess strong reductive TCA cycle have been rarely studied to produce these chemicals, except for succinic acid, due to their dependence on fumarate reduction to transport electrons for ATP synthesis. In this study, malic acid (MA), a dicarboxylic acid of industrial importance, was selected as a target chemical for mass production using Mannheimia succiniciproducens, a rumen bacterium possessing a strong reductive branch of the TCA cycle. The metabolic pathway was reconstructed by eliminating fumarase to prevent MA conversion to fumarate. The respiration system of M. succiniciproducens was reconstructed by introducing the Actinobacillus succinogenes dimethylsulfoxide (DMSO) reductase to improve cell growth using DMSO as an electron acceptor. Also, the cell membrane was engineered by employing Pseudomonas aeruginosa cis-trans isomerase to enhance MA tolerance. High inoculum fed-batch fermentation of the final engineered strain produced 61 g/L of MA with an overall productivity of 2.27 g/L/h, which is the highest MA productivity reported to date. The systems metabolic engineering strategies reported in this study will be useful for developing anaerobic bioprocesses for the production of various industrially important chemicals. Topics: Animals; Dimethyl Sulfoxide; Electrons; Fumarates; Mannheimia; Metabolic Engineering | 2023 |
Alterations of lipid-mediated mitophagy result in aging-dependent sensorimotor defects.
The metabolic consequences of mitophagy alterations due to age-related stress in healthy aging brains versus neurodegeneration remain unknown. Here, we demonstrate that ceramide synthase 1 (CerS1) is transported to the outer mitochondrial membrane by the p17/PERMIT transporter that recognizes mislocalized mitochondrial ribosomes (mitoribosomes) via 39-FLRN-42 residues, inducing ceramide-mediated mitophagy. P17/PERMIT-CerS1-mediated mitophagy attenuated the argininosuccinate/fumarate/malate axis and induced d-glucose and fructose accumulation in neurons in culture and brain tissues (primarily in the cerebellum) of wild-type mice in vivo. These metabolic changes in response to sodium-selenite were nullified in the cerebellum of CerS1to/to (catalytically inactive for C18-ceramide production CerS1 mutant), PARKIN-/- or p17/PERMIT-/- mice that have dysfunctional mitophagy. Whereas sodium selenite induced mitophagy in the cerebellum and improved motor-neuron deficits in aged wild-type mice, exogenous fumarate or malate prevented mitophagy. Attenuating ceramide-mediated mitophagy enhanced damaged mitochondria accumulation and age-dependent sensorimotor abnormalities in p17/PERMIT-/- mice. Reinstituting mitophagy using a ceramide analog drug with selenium conjugate, LCL768, restored mitophagy and reduced malate/fumarate metabolism, improving sensorimotor deficits in old p17/PERMIT-/- mice. Thus, these data describe the metabolic consequences of alterations to p17/PERMIT/ceramide-mediated mitophagy associated with the loss of mitochondrial quality control in neurons and provide therapeutic options to overcome age-dependent sensorimotor deficits and related disorders like amyotrophic lateral sclerosis (ALS). Topics: Animals; Ceramides; Fumarates; Malates; Mice; Mitophagy; Motor Neurons; Ubiquitin-Protein Ligases | 2023 |
Fumarase activity in NAD-dependent malic enzyme, MaeA, from Escherichia coli.
NAD-dependent malic enzymes catalyze NAD reduction to NADH while converting malate to pyruvate and CO Topics: Escherichia coli; Fumarate Hydratase; Fumarates; Humans; Malates; NAD; NADP; Pyruvic Acid | 2023 |
Interchangeability of class I and II fumarases in an obligate methanotroph Methylotuvimicrobium alcaliphilum 20Z.
The methanotrophic bacterium Methylotuvimicrobium alcaliphilum 20Z is an industrially promising candidate for bioconversion of methane into value-added chemicals. Here, we have study the metabolic consequences of the breaking in the tricarboxylic acid (TCA) cycle by fumarase knockout. Two fumarases belonging to non-homologous class I and II fumarases were obtained from the bacterium by heterologous expression in Escherichia coli. Class I fumarase (FumI) is a homodimeric enzyme catalyzing the reversible hydration of fumarate and mesaconate with activities of ~94 and ~81 U mg-1 protein, respectively. The enzyme exhibited high activity under aerobic conditions, which is a non-typical property for class I fumarases characterized to date. The calculation of kcat/S0.5 showed that the enzyme works effectively with either fumarate or mesaconate, but it is almost four times less specific to malate. Class II fumarase (FumC) has a tetrameric structure and equal activities of both fumarate hydration and malate dehydration (~45 U mg-1 protein). Using mutational analysis, it was shown that both forms of the enzyme are functionally interchangeable. The triple mutant strain 20Z-3E (ΔfumIΔfumCΔmae) deficient in the genes encoding the both fumarases and the malic enzyme accumulated 2.6 and 1.1 mmol g-1 DCW fumarate in the medium when growing on methane and methanol, respectively. Our data suggest the redundancy of the metabolic node in the TCA cycle making methanotroph attractive targets for modification, including generation of strains producing the valuable metabolites. Topics: Escherichia coli; Fumarate Hydratase; Fumarates; Malates; Methane | 2023 |
Enterohaemorrhagic E. coli utilizes host- and microbiota-derived L-malate as a signaling molecule for intestinal colonization.
The mammalian gastrointestinal tract is a complex environment that hosts a diverse microbial community. To establish infection, bacterial pathogens must be able to compete with the indigenous microbiota for nutrients, as well as sense the host environment and modulate the expression of genes essential for colonization and virulence. Here, we found that enterohemorrhagic Escherichia coli (EHEC) O157:H7 imports host- and microbiota-derived L-malate using the DcuABC transporters and converts these substrates into fumarate to fuel anaerobic fumarate respiration during infection, thereby promoting its colonization of the host intestine. Moreover, L-malate is important not only for nutrient metabolism but also as a signaling molecule that activates virulence gene expression in EHEC O157:H7. The complete virulence-regulating pathway was elucidated; the DcuS/DcuR two-component system senses high L-malate levels and transduces the signal to the master virulence regulator Ler, which in turn activates locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence to epithelial cells of the large intestine. Disruption of this virulence-regulating pathway by deleting either dcuS or dcuR significantly reduced colonization by EHEC O157:H7 in the infant rabbit intestinal tract; therefore, targeting these genes and altering physiological aspects of the intestinal environment may offer alternatives for EHEC infection treatment. Topics: Animals; DNA-Binding Proteins; Enterohemorrhagic Escherichia coli; Escherichia coli Infections; Escherichia coli O157; Escherichia coli Proteins; Fumarates; Gene Expression Regulation, Bacterial; Humans; Intestines; Malates; Mammals; Microbiota; Protein Kinases; Rabbits | 2023 |
Imaging Glioblastoma Response to Radiotherapy Using 2H Magnetic Resonance Spectroscopy Measurements of Fumarate Metabolism.
Early detection of tumor cell death in glioblastoma following treatment with chemoradiation has the potential to distinguish between true disease progression and pseudoprogression. Tumor cell death can be detected noninvasively in vivo by imaging the production of [2,3-2H2]malate from [2,3-2H2]fumarate using 2H magnetic resonance (MR) spectroscopic imaging. We show here that 2H MR spectroscopy and spectroscopic imaging measurements of [2,3-2H2]fumarate metabolism can detect tumor cell death in orthotopically implanted glioblastoma models within 48 hours following the completion of chemoradiation. Following the injection of [2,3-2H2]fumarate into tumor-bearing mice, production of [2,3-2H2]malate was measured in a human cell line-derived model and in radiosensitive and radioresistant patient-derived models of glioblastoma that were treated with temozolomide followed by targeted fractionated irradiation. The increase in the [2,3-2H2]malate/[2,3-2H2]fumarate signal ratio posttreatment, which correlated with histologic assessment of cell death, was a more sensitive indicator of treatment response than diffusion-weighted and contrast agent-enhanced 1H MRI measurements, which have been used clinically to detect responses of glioblastoma to chemoradiation. Overall, early detection of glioblastoma cell death using 2H MRI of malate production from fumarate could help improve the clinical evaluation of response to chemoradiation.. 2H magnetic resonance imaging of labeled fumarate metabolism can detect early evidence of tumor cell death following chemoradiation, meeting a clinical need to reliably detect treatment response in glioblastoma. Topics: Animals; Brain Neoplasms; Contrast Media; Fumarates; Glioblastoma; Humans; Magnetic Resonance Imaging; Magnetic Resonance Spectroscopy; Malates; Mice; Temozolomide | 2022 |
Geobacter sulfurreducens metabolism at different donor/acceptor ratios.
Geobacter species have great application potential in remediation processes and electrobiotechnology. In all applications, understanding the metabolism will enable target-oriented optimization of the processes. The typical electron donor and carbon source of the Geobacter species is acetate, while fumarate is the usual electron acceptor. Here, we could show that depending on the donor/acceptor ratio in batch cultivation of Geobacter sulfurreducens different product patterns occur. With a donor/acceptor ratio of 1:2.5 malate accumulated as an intermediate product but was metabolized to succinate subsequently. At the end of the cultivation, the ratio of fumarate consumed and succinate produced was approximately 1:1. When fumarate was added in excess, malate accumulated in the fermentation broth without further metabolization. After the addition of acetate to stationary cells, malate concentration decreased immediately and additional succinate was synthesized. Finally, it was shown that also resting cells of G. sulfurreducens could efficiently convert fumarate to malate without an additional electron donor. Overall, it was demonstrated that by altering the donor/acceptor ratio, targeted optimization of the metabolite conversion by G. sulfurreducens can be realized. Topics: Acetates; Electron Transport; Fumarates; Geobacter; Malates; Oxidation-Reduction; Succinic Acid | 2022 |
Metabolic and Microbial Community Engineering for Four-Carbon Dicarboxylic Acid Production from CO
Topics: Carbon; Carbon Dioxide; Dicarboxylic Acids; Fumarates; Glycogen; Malates; Metabolic Engineering; Microbiota; Succinic Acid; Synechocystis | 2022 |
Development of simultaneous quantitative analysis of tricarboxylic acid cycle metabolites to identify specific metabolites in cancer cells by targeted metabolomic approach.
The tricarboxylic acid (TCA) cycle is one of the most important pathways of energy metabolism, and the profiles of its components are influenced by factors such as diseases and diets. Therefore, the differences in metabolic profile of TCA cycle between healthy and cancer cells have been the focus of studies to understand pathological conditions. In this study, we developed a quantitative method to measure TCA cycle metabolites using LC-MS/MS to obtain useful metabolic profiles for development of diagnostic and therapeutic methods for cancer. We successfully analyzed 11 TCA cycle metabolites by LC MS/MS with high reproducibility by using a PFP column with 0.5% formic acid as a mobile phase. Next, we analyzed the concentration of TCA cycle metabolites in human cell lines (HaCaT: normal skin keratinocytes; A431: skin squamous carcinoma cells; SW480: colorectal cancer cells). We observed reduced concentration of succinate and increased concentration of citrate, 2-hydroxyglutarate, and glutamine in A431 cells as compared with HaCaT cells. On the other hand, decreased concentration of isocitrate, fumarate, and α-ketoglutarate and increased concentration of malate, glutamine, and glutamate in A431 cells were observed in comparison with SW480 cells. These findings suggested the possibility of identifying disease-specific metabolites and/or organ-specific metabolites by using this targeted metabolomic analysis. Topics: Cell Line, Tumor; Cells, Cultured; Chromatography, Liquid; Citric Acid Cycle; Energy Metabolism; Fumarates; Humans; Isocitrates; Ketoglutaric Acids; Malates; Metabolome; Metabolomics; Neoplasms; Reproducibility of Results; Tandem Mass Spectrometry | 2021 |
Sensitive and Reproducible Mass Spectrometry-Compatible RP-UHPLC Analysis of Tricarboxylic Acid Cycle and Related Metabolites in Biological Fluids: Application to Human Urine.
We describe a method for the analysis of organic acids, including those of the tricarboxylic acid cycle (TCA cycle), by mixed-mode reversed-phase chromatography, on a CSH Phenyl-Hexyl column, to accomplish mixed-mode anion-exchange separations, which results in increased retention for acids without the need for ion-pairing reagents or other mobile phase additives. The developed method exhibited good retention time reproducibility for over 650 injections or more than 5 days of continuous operation. Additionally, it showed excellent resolution of the critical pairs, isocitric acid and citric acid as well as malic acid and fumaric acid, among others. The use of hybrid organic-inorganic surface technology incorporated into the hardware of the column not only improved the mass spectral quality and subsequent database match scoring but also increased the recovery of the analytes, showing particular benefit for low concentrations of phosphorylated species. The method was applied to the comparative metabolomic analysis of urine samples from healthy controls and breast cancer positive subjects. Unsupervised PCA analysis showed distinct grouping of samples from healthy and diseased subjects, with excellent reproducibility of respective injection clusters. Finally, abundance plots of selected analytes from the tricarboxylic acid cycle revealed differences between healthy control and disease groups. Topics: Body Fluids; Chromatography, High Pressure Liquid; Citric Acid; Citric Acid Cycle; Fumarates; Humans; Isocitrates; Malates; Mass Spectrometry; Molecular Structure | 2021 |
The
Topics: Amino Acid Sequence; Arginine; Aspartic Acid; Bacterial Proteins; Binding Sites; Caco-2 Cells; Campylobacter jejuni; Chemotaxis; Fucose; Fumarates; Galactose; HCT116 Cells; Humans; Isoleucine; Ligands; Malates; Mannose; Phylogeny; Protein Domains; Receptors, Cell Surface; Sequence Alignment; Signal Transduction; Thiamine; Virulence | 2021 |
In vitro nitazoxanide exposure affects energetic metabolism of Taenia crassiceps.
Nitazoxanide (NTZ) is a broad-spectrum drug used in intestinal infections, but still poorly explored in the treatment of parasitic tissular infections. This study aimed to evaluate the in vitro responses of the energetic metabolism of T. crassiceps cysticerci induced by NTZ. The organic acids of the tricarboxylic acid cycle, products derived from fatty acids oxidation and protein catabolism were analyzed. These acids were quantified after 24 h of in vitro exposure to different NTZ concentrations. A positive control group was performed with albendazole sulfoxide (ABZSO). The significant alterations in citrate, fumarate and malate concentrations showed the NTZ influence in the tricarboxylic acid (TCA) cycle. The non-detection of acetate confirmed that the main mode of action of NTZ is effective against T. crassiceps cysticerci. The statistical differences in fumarate, urea and beta-hydroxybutyrate concentrations showed the NTZ effect on protein catabolism and fatty acid oxidation. Therefore, the main energetic pathways such as the TCA cycle, protein catabolism and fatty acids oxidation were altered after in vitro NTZ exposure. In conclusion, NTZ induced a significant metabolic stress in the parasite indicating that it may be used as an alternative therapeutic choice for cysticercosis treatment. The use of metabolic approaches to establish comparisons between anti parasitic drugs mode of actions is proposed. Topics: Albendazole; Analysis of Variance; Animals; Anthelmintics; Antiparasitic Agents; Citrates; Citric Acid Cycle; Culture Media; Cysticercus; Energy Metabolism; Fumarates; Ketoglutaric Acids; Malates; Neurocysticercosis; Nitro Compounds; Oxaloacetic Acid; Succinic Acid; Taenia; Thiazoles | 2020 |
Reductive tricarboxylic acid cycle enzymes and reductive amino acid synthesis pathways contribute to electron balance in a
Purple non-sulfur bacteria (PNSB) use light for energy and organic substrates for carbon and electrons when growing photoheterotrophically. This lifestyle generates more reduced electron carriers than are required for biosynthesis, even during consumption of some of the most oxidized organic substrates like malate and fumarate. Reduced electron carriers not used in biosynthesis must still be oxidized for photoheterotrophic growth to occur. Diverse PNSB commonly rely on the CO Topics: Amino Acids; Bacterial Proteins; Biomass; Biosynthetic Pathways; Citric Acid Cycle; Electrons; Fumarates; Isoleucine; Ketoglutaric Acids; Malates; Mutation; Oxidation-Reduction; Photosynthesis; Rhodospirillum rubrum | 2020 |
Impact of Up- and Downregulation of Metabolites and Mitochondrial Content on pH and Color of the Longissimus Muscle from Normal-pH and Dark-Cutting Beef.
Limited knowledge is currently available on the biochemical basis for the development of dark-cutting beef. The objective of this research was to determine the metabolite profile and mitochondrial content differences between normal-pH and dark-cutting beef. A gas chromatography-mass spectrometer-based nontargeted metabolomic approach indicated downregulation of glycolytic metabolites, including glucose-1- and 6-phosphate and upregulation of tricarboxylic substrates such as malic and fumaric acids occurred in dark-cutting beef when compared to normal-pH beef. Neurotransmitters such as 4-aminobutyric acid and succinate semialdehyde were upregulated in dark-cutting beef than normal-pH beef. Immunohistochemistry indicated a more oxidative fiber type in dark-cutting beef than normal-pH beef. In support, the mitochondrial protein and DNA content were greater in dark-cutting beef. This increased mitochondrial content, in part, could influence oxygen consumption and myoglobin oxygenation/appearance of dark-cutting beef. The current results demonstrate that the more tricarboxylic metabolites and mitochondrial content in dark-cutting beef impact muscle pH and color. Topics: Animals; Cattle; Color; Fumarates; Glucosephosphates; Hydrogen-Ion Concentration; Malates; Meat; Mitochondria; Muscle, Skeletal; Myoglobin; Oxidation-Reduction | 2020 |
A new water-soluble bacterial NADH: fumarate oxidoreductase.
The cytoplasmic fumarate reductase of Klebsiella pneumoniae (FRD) is a monomeric protein which contains three prosthetic groups: noncovalently bound FMN and FAD plus a covalently bound FMN. In the present work, NADH is revealed to be an inherent electron donor for this enzyme. We found that the fumarate reductase activity of FRD significantly exceeds its NADH dehydrogenase activity. During the catalysis of NADH:fumarate oxidoreductase reaction, FRD turnover is limited by a very low rate (∼10/s) of electron transfer between the noncovalently and covalently bound FMN moieties. Induction of FRD synthesis in K. pneumoniae cells was observed only under anaerobic conditions in the presence of fumarate or malate. Enzymes with the FRD-like domain architecture are widely distributed among various bacteria and apparently comprise a new type of water-soluble NADH:fumarate oxidoreductases. Topics: Anaerobiosis; Enzyme Activation; Fumarates; Klebsiella pneumoniae; Malates; NAD; NADH Dehydrogenase; Water | 2020 |
Effects of propionate concentration on short-term metabolism in liver explants from dairy cows in the postpartum period.
Our objective was to determine the temporal effects of increasing supply of propionate on propionate metabolism in liver tissue of dairy cows in the postpartum (PP) period. A total of 6 dairy cows [primiparous: n = 3, 9.00 ± 1.00 d PP (mean ± SD) and multiparous: n = 3; 4.67 ± 1.15 d PP] were biopsied for liver explants in a block-design experiment. Explants were treated with 3 concentrations of [ Topics: Acetyl Coenzyme A; Animals; Cattle; Citric Acid; Citric Acid Cycle; Dietary Supplements; Dose-Response Relationship, Drug; Female; Fumarates; Gluconeogenesis; Glucose; Lactation; Liver; Malates; Postpartum Period; Propionates | 2020 |
Biochemical characterization of phosphoenolpyruvate carboxykinases from Arabidopsis thaliana.
ATP-dependent phosphoenolpyruvate carboxykinases (PEPCKs, EC 4.1.1.49) from C4 and CAM plants have been widely studied due to their crucial role in photosynthetic CO2 fixation. However, our knowledge on the structural, kinetic and regulatory properties of the enzymes from C3 species is still limited. In this work, we report the recombinant production and biochemical characterization of two PEPCKs identified in Arabidopsis thaliana: AthPEPCK1 and AthPEPCK2. We found that both enzymes exhibited high affinity for oxaloacetate and ATP, reinforcing their role as decarboxylases. We employed a high-throughput screening for putative allosteric regulators using differential scanning fluorometry and confirmed their effect on enzyme activity by performing enzyme kinetics. AthPEPCK1 and AthPEPCK2 are allosterically modulated by key intermediates of plant metabolism, namely succinate, fumarate, citrate and α-ketoglutarate. Interestingly, malate activated and glucose 6-phosphate inhibited AthPEPCK1 but had no effect on AthPEPCK2. Overall, our results demonstrate that the enzymes involved in the critical metabolic node constituted by phosphoenolpyruvate are targets of fine allosteric regulation. Topics: Adenosine Triphosphate; Allosteric Regulation; Arabidopsis; Arabidopsis Proteins; Citric Acid; Escherichia coli; Fluorometry; Fumarates; Kinetics; Malates; Manganese; Oxaloacetic Acid; Phosphoenolpyruvate Carboxykinase (ATP); Photosynthesis; Protein Binding; Recombinant Proteins; Succinic Acid; Transition Temperature | 2019 |
A New Mechanism for High-Affinity Uptake of C4-Dicarboxylates in Bacteria Revealed by the Structure of Rhodopseudomonas palustris MatC (RPA3494), a Periplasmic Binding Protein of the Tripartite Tricarboxylate Transporter (TTT) Family.
C4-dicarboxylates play a central role in cellular physiology as key metabolic intermediates. Under aerobic conditions, they participate in the citric acid cycle, while in anaerobic bacteria, they are important in energy-conserving fermentation and respiration processes. Ten different families of secondary transporters have been described to participate in C4-dicarboxylate movement across biological membranes, but only one of these utilizes an extracytoplasmic solute binding protein to achieve high-affinity uptake. Here, we identify the MatBAC system from the photosynthetic bacterium Rhodopseudomonas palustris as the first member of the tripartite tricarboxylate transport family to be involved in C4-dicarboxylate transport. Tryptophan fluorescence spectroscopy showed that MatC, the periplasmic binding protein from this system, binds to l- and d-malate with K Topics: Amino Acid Sequence; Bacterial Proteins; Biological Transport; Carrier Proteins; Fumarates; Malates; Membrane Transport Proteins; Periplasm; Periplasmic Binding Proteins; Rhodopseudomonas; Succinic Acid | 2019 |
Exogenous γ-aminobutyric acid treatment improves the cold tolerance of zucchini fruit during postharvest storage.
This work examines the effect of a treatment with 1 mM of γ-aminobutyric acid (GABA) on zucchini fruit during postharvest cold storage. Specifically, the effect of GABA on postharvest quality was measured, as well as its implication in the GABA shunt and other related metabolic pathways. The treatments were performed in Sinatra, a variety of zucchini highly sensitive to low-temperature storage. The application of GABA improved the quality of zucchini fruit stored at 4 °C, with a reduction of chilling-injury index, weight loss, and cell death, as well as a lower rate of electrolyte leakage. GABA content was significantly higher in the treated fruit than in the control fruit at all times analyzed. At the end of the storage period, GABA-treated fruit had higher contents of both proline and putrescine. The catabolism of this polyamine was not affected by exogenous GABA. Also, over the long term, the treatment induced the GABA shunt by increasing the activities of the enzymes GABA transaminase (GABA-T) and glutamate decarboxylase (GAD). GABA-treated fruit contained higher levels of fumarate and malate than did non-treated fruit, as well as higher ATP and NADH contents. These results imply that the GABA shunt is involved in providing metabolites to produce energy, reduce power, and help the fruit to cope with cold stress over the long term. Topics: 4-Aminobutyrate Transaminase; Adenosine Triphosphate; Alanine; Amine Oxidase (Copper-Containing); Cell Death; Cold Temperature; Cucurbita; Food Storage; Fruit; Fumarates; gamma-Aminobutyric Acid; Glutamate Decarboxylase; Glutamic Acid; Malates; NAD; Proline; Putrescine | 2019 |
Metabolic Adaptation in Methicillin-Resistant
Methicillin-resistant Topics: Acetylglucosamine; Adult; Animals; Biofilms; Bronchi; Bronchoalveolar Lavage Fluid; Cystic Fibrosis; Cytokines; Female; Fumarates; Gentamicins; Glucose; Humans; Lung Diseases; Malates; Male; Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Inbred C57BL; Middle Aged; Phylogeny; Pneumonia, Staphylococcal; Pyruvic Acid; Staphylococcal Infections; Transcription, Genetic; Tricarboxylic Acids; Whole Genome Sequencing | 2019 |
Differential Transcriptomic and Metabolomic Responses in the Liver of Nile Tilapia (Oreochromis niloticus) Exposed to Acute Ammonia.
Ammonia is toxic to aquatic animal. Currently, only limited works were reported on the responses of aquatic animals after ammonia exposure using "omics" technologies. Tilapia suffers from the stress of ammonia-nitrogen during intensive recirculating aquaculture. Optimizing ammonia stress tolerance has become an important issue in tilapia breeding. The molecular and biochemical mechanisms of ammonia-nitrogen toxicity have not been understood comprehensively in tilapia yet. In this study, using RNA-seq and gas chromatograph system coupled with a Pegasus HT time-of-flight mass spectrometer (GC-TOF-MS) techniques, we investigated differential expressed genes (DEGs) and metabolomes in the liver at 6 h post-challenges (6 hpc) and 24 h post-challenges (24 hpc) under high concentration of ammonia-nitrogen treatment. We detected 2258 DEGs at 6 hpc and 315 DEGs at 24 hpc. Functional enrichment analysis indicated that DEGs were significantly associated with cholesterol biosynthesis, steroid and lipid metabolism, energy conservation, and mitochondrial tissue organization. Metabolomic analysis detected 31 and 36 metabolites showing significant responses to ammonia-nitrogen stress at 6 and 24 hpc, respectively. D-(Glycerol 1-phosphate), fumaric acid, and L-malic acid were found significantly down-regulated at both 6 and 24 hpc. The integrative analysis of transcriptomics and metabolomics suggested considerable alterations and precise control of gene expression at both physiological and molecular levels in response to the stress of ammonia-nitrogen in tilapia. Topics: Ammonia; Animals; Cholesterol; Environmental Exposure; Fish Proteins; Fumarates; Gene Expression Profiling; Gene Expression Regulation; Gene Ontology; Glycerophosphates; Lipid Metabolism; Liver; Malates; Metabolome; Molecular Sequence Annotation; Stress, Physiological; Tilapia; Transcriptome; Water Pollutants, Chemical | 2019 |
Biochemical characterisation of fumarase C from a unicellular cyanobacterium demonstrating its substrate affinity, altered by an amino acid substitution.
The tricarboxylic acid cycle produces NADH for oxidative phosphorylation and fumarase [EC 4.2.1.2] is a critical enzyme in this cycle, catalysing the reversible conversion of fumarate and L-malate. Fumarase is applied to industrial L-malate production as a biocatalyst. L-malate is used in a wide range of industries such as food and beverage, pharmacy chemistry. Although the biochemical properties of fumarases have been studied in many organisms, they have not been investigated in cyanobacteria. In this study, the optimum pH and temperature of Synechocystis 6803 fumarase C (SyFumC) were 7.5 and 30 °C, respectively. The K Topics: Alanine; Amino Acid Sequence; Amino Acid Substitution; Arabidopsis; Biocatalysis; Citric Acid; Citric Acid Cycle; Escherichia coli; Fumarate Hydratase; Fumarates; Glutamic Acid; Hydrogen-Ion Concentration; Malates; Mycobacterium tuberculosis; Phylogeny; Substrate Specificity; Succinic Acid; Synechocystis; Temperature | 2019 |
Sub-minute kinetics of human red cell fumarase:
Fumarate is an important probe of metabolism in hyperpolarized magnetic resonance imaging and spectroscopy. It is used to detect the release of fumarase in cancer tissues, which is associated with necrosis and drug treatment. Nevertheless, there are limited reports describing the detailed kinetic studies of this enzyme in various cells and tissues. Thus, we aimed to evaluate the sub-minute kinetics of human red blood cell fumarase using nuclear magnetic resonance (NMR) spectroscopy, and to provide a quantitative description of the enzyme that is relevant to the use of fumarate as a probe of cell rupture. The fumarase reaction was studied using time courses of Topics: Carbon-13 Magnetic Resonance Spectroscopy; Erythrocytes; Fumarate Hydratase; Fumarates; Humans; Kinetics; Malates; Markov Chains; Models, Biological; Monte Carlo Method; Proton Magnetic Resonance Spectroscopy; Time Factors | 2018 |
Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer.
Genetic alterations drive metabolic reprograming to meet increased biosynthetic precursor and energy demands for cancer cell proliferation and survival in unfavorable environments. A systematic study of gene-metabolite regulatory networks and metabolic dysregulation should reveal the molecular mechanisms underlying prostate cancer (PCa) pathogenesis. Herein, we performed gas chromatography-mass spectrometry (GC-MS)-based metabolomics and RNA-seq analyses in prostate tumors and matched adjacent normal tissues (ANTs) to elucidate the molecular alterations and potential underlying regulatory mechanisms in PCa. Significant accumulation of metabolic intermediates and enrichment of genes in the tricarboxylic acid (TCA) cycle were observed in tumor tissues, indicating TCA cycle hyperactivation in PCa tissues. In addition, the levels of fumarate and malate were highly correlated with the Gleason score, tumor stage and expression of genes encoding related enzymes and were significantly related to the expression of genes involved in branched chain amino acid degradation. Using an integrated omics approach, we further revealed the potential anaplerotic routes from pyruvate, glutamine catabolism and branched chain amino acid (BCAA) degradation contributing to replenishing metabolites for TCA cycle. Integrated omics techniques enable the performance of network-based analyses to gain a comprehensive and in-depth understanding of PCa pathophysiology and may facilitate the development of new and effective therapeutic strategies. Topics: Citric Acid Cycle; Fumarates; Gas Chromatography-Mass Spectrometry; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Regulatory Networks; Humans; Malates; Male; Metabolomics; Neoplasm Grading; Prostatic Neoplasms; Sequence Analysis, RNA | 2018 |
Effects of organic acid and medium chain fatty acid blends on the performance of sows and their piglets.
This study was aimed to evaluate the effects of organic acid (OA) and medium-chain fatty acid (MCFA) blends on production performance of sows and their litters. A total of 36 sows (Landrace × Yorkshire, average parity is 3.3, SE = 0.2) were randomly allocated to three treatments with 12 replicates. Dietary treatments were as follows: CON, basal diet; MC1, CON + 0.1% OA, and MCFA blends; MC2, CON + 0.2% OA, and MCFA blends. During lactation, no differences were observed in body weight (BW) loss, average daily feed intake, backfat thickness, digestibility of dry matter, nitrogen, or energy of sows. There were linear increase (p < 0.05) in BW and average daily gain of sucking piglets. On parturition and weaning day, there was a linear increase (p < 0.05) in fecal Lactobacillus counts, as well as a linear decrease (p < 0.05) in fecal Escherichia coli counts of sows on weaning day. The sucking piglets also had a linear increase (p < 0.05) in fecal Lactobacillus counts and a linear decrease (p < 0.05) in fecal E. coli counts. In conclusion, dietary supplementation of OA and MCFA blends in sows exerts beneficial effects to sows shifted fecal microbiota by increasing Lactobacillus and decreased E. coli counts. It also improved the performance of piglets. Topics: Animal Feed; Animals; Bacterial Load; Citric Acid; Diet; Dietary Supplements; Digestion; Escherichia coli; Fatty Acids; Feces; Female; Fumarates; Lactation; Lactobacillus; Malates; Male; Nutrients; Swine | 2018 |
Suppression of experimental cerebral malaria by disruption of malate:quinone oxidoreductase.
Aspartate, which is converted from oxaloacetate (OAA) by aspartate aminotransferase, is considered an important precursor for purine salvage and pyrimidine de novo biosynthesis, and is thus indispensable for the growth of Plasmodium parasites at the asexual blood stages. OAA can be produced in malaria parasites via two routes: (i) from phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxylase (PEPC) in the cytosol, or (ii) from fumarate by consecutive reactions catalyzed by fumarate hydratase (FH) and malate:quinone oxidoreductase (MQO) in the mitochondria of malaria parasites. Although PEPC-deficient Plasmodium falciparum and Plasmodium berghei (rodent malaria) parasites show a growth defect, the mutant P. berghei can still cause experimental cerebral malaria (ECM) with similar dynamics to wild-type parasites. In contrast, the importance of FH and MQO for parasite viability, growth and virulence is not fully understood because no FH- and MQO-deficient P. falciparum has been established. In this study, the role of FH and MQO in the pathogenicity of asexual-blood-stage Plasmodium parasites causing cerebral malaria was examined.. First, FH- and MQO-deficient parasites were generated by inserting a luciferase-expressing cassette into the fh and mqo loci in the genome of P. berghei ANKA strain. Second, the viability of FH-deficient and MQO-deficient parasites that express luciferase was determined by measuring luciferase activity, and the effect of FH or MQO deficiency on the development of ECM was examined. While the viability of FH-deficient P. berghei was comparable to that of control parasites, MQO-deficient parasites exhibited considerably reduced viability. FH activity derived from erythrocytes was also detected. This result and the absence of phenotype in FH-deficient P. berghei parasites suggest that fumarate can be metabolized to malate by host or parasite FH in P. berghei-infected erythrocytes. Furthermore, although the growth of FH- and MQO-deficient parasites was impaired, the development of ECM was suppressed only in mice infected with MQO-deficient parasites.. These findings suggest that MQO-mediated mitochondrial functions are required for development of ECM of asexual-blood-stage Plasmodium parasites. Topics: Animals; Blood-Brain Barrier; Erythrocytes; Female; Fumarate Hydratase; Fumarates; Malaria, Cerebral; Malates; Male; Membrane Potential, Mitochondrial; Mice; Mice, Inbred C57BL; Mitochondria; Oxaloacetic Acid; Oxidoreductases; Plasmodium berghei; Specific Pathogen-Free Organisms | 2017 |
Deficiency of essential dietary n-3 PUFA disrupts the caecal microbiome and metabolome in mice.
n-3 PUFA are lipids that play crucial roles in immune-regulation, cardio-protection and neurodevelopment. However, little is known about the role that these essential dietary fats play in modulating caecal microbiota composition and the subsequent production of functional metabolites. To investigate this, female C57BL/6 mice were assigned to one of three diets (control (CON), n-3 supplemented (n3+) or n-3 deficient (n3-)) during gestation, following which their male offspring were continued on the same diets for 12 weeks. Caecal content of mothers and offspring were collected for 16S sequencing and metabolic phenotyping. n3- male offspring displayed significantly less % fat mass than n3+ and CON. n-3 Status also induced a number of changes to gut microbiota composition such that n3- offspring had greater abundance of Tenericutes, Anaeroplasma and Coriobacteriaceae. Metabolomics analysis revealed an increase in caecal metabolites involved in energy metabolism in n3+ including α-ketoglutaric acid, malic acid and fumaric acid. n3- animals displayed significantly reduced acetate, butyrate and total caecal SCFA production. These results demonstrate that dietary n-3 PUFA regulate gut microbiota homoeostasis whereby n-3 deficiency may induce a state of disturbance. Further studies are warranted to examine whether these microbial and metabolic disturbances are causally related to changes in metabolic health outcomes. Topics: Animal Nutritional Physiological Phenomena; Animals; Body Composition; Cecum; Diet; Dietary Supplements; DNA, Bacterial; Fatty Acids; Fatty Acids, Omega-3; Female; Fumarates; Gastrointestinal Microbiome; Ketoglutaric Acids; Malates; Male; Metabolome; Metabolomics; Mice; Mice, Inbred C57BL; RNA, Ribosomal, 16S; Sequence Analysis, DNA | 2017 |
Mutations in MDH2, Encoding a Krebs Cycle Enzyme, Cause Early-Onset Severe Encephalopathy.
MDH2 encodes mitochondrial malate dehydrogenase (MDH), which is essential for the conversion of malate to oxaloacetate as part of the proper functioning of the Krebs cycle. We report bi-allelic pathogenic mutations in MDH2 in three unrelated subjects presenting with early-onset generalized hypotonia, psychomotor delay, refractory epilepsy, and elevated lactate in the blood and cerebrospinal fluid. Functional studies in fibroblasts from affected subjects showed both an apparently complete loss of MDH2 levels and MDH2 enzymatic activity close to null. Metabolomics analyses demonstrated a significant concomitant accumulation of the MDH substrate, malate, and fumarate, its immediate precursor in the Krebs cycle, in affected subjects' fibroblasts. Lentiviral complementation with wild-type MDH2 cDNA restored MDH2 levels and mitochondrial MDH activity. Additionally, introduction of the three missense mutations from the affected subjects into Saccharomyces cerevisiae provided functional evidence to support their pathogenicity. Disruption of the Krebs cycle is a hallmark of cancer, and MDH2 has been recently identified as a novel pheochromocytoma and paraganglioma susceptibility gene. We show that loss-of-function mutations in MDH2 are also associated with severe neurological clinical presentations in children. Topics: Age of Onset; Alleles; Amino Acid Sequence; Brain Diseases; Child; Child, Preschool; Citric Acid Cycle; Fibroblasts; Fumarates; Genetic Complementation Test; Humans; Infant; Infant, Newborn; Malate Dehydrogenase; Malates; Male; Metabolomics; Models, Molecular; Mutation | 2017 |
Circulating tricarboxylic acid cycle metabolite levels in citrin-deficient children with metabolic adaptation, with and without sodium pyruvate treatment.
Citrin deficiency causes adult-onset type II citrullinemia (CTLN-2), which later manifests as severe liver steatosis and life-threatening encephalopathy. Long-standing energy deficit of the liver and brain may predispose ones to CTLN-2. Here, we compared the energy-driving tricarboxylic acid (TCA) cycle and fatty acid β-oxidation cycle between 22 citrin-deficient children (age, 3-13years) with normal liver functions and 37 healthy controls (age, 5-13years). TCA cycle analysis showed that basal plasma citrate and α-ketoglutarate levels were significantly higher in the affected than the control group (p<0.01). Conversely, basal plasma fumarate and malate levels were significantly lower than those for the control (p<0.001). The plasma level of 3-OH-butyrate derived from fatty acid β-oxidation was significantly higher in the affected group (p<0.01). Ten patients underwent sodium pyruvate therapy. However, this therapy did not correct or attenuate such deviations in both cycles. Sodium pyruvate therapy significantly increased fasting insulin secretion (p<0.01); the fasting sugar level remained unchanged. Our results suggest that citrin-deficient children show considerable deviations of TCA cycle metabolite profiles that are resistant to sodium pyruvate treatment. Thus, long-standing and considerable TCA cycle dysfunction might be a pivotal metabolic background of CTLN-2 development. Topics: Adolescent; Child; Child, Preschool; Citric Acid; Citric Acid Cycle; Citrullinemia; Fatty Acids; Female; Fumarates; Humans; Ketoglutaric Acids; Malates; Male; Oxidative Stress; Pyruvates; Treatment Outcome | 2017 |
Inhibition of Mitochondrial Complex II by the Anticancer Agent Lonidamine.
The antitumor agent lonidamine (LND; 1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid) is known to interfere with energy-yielding processes in cancer cells. However, the effect of LND on central energy metabolism has never been fully characterized. In this study, we report that a significant amount of succinate is accumulated in LND-treated cells. LND inhibits the formation of fumarate and malate and suppresses succinate-induced respiration of isolated mitochondria. Utilizing biochemical assays, we determined that LND inhibits the succinate-ubiquinone reductase activity of respiratory complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through complex II, which reduced the viability of the DB-1 melanoma cell line. The ability of LND to promote cell death was potentiated by its suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. Using stable isotope tracers in combination with isotopologue analysis, we showed that LND increased glutaminolysis but decreased reductive carboxylation of glutamine-derived α-ketoglutarate. Our findings on the previously uncharacterized effects of LND may provide potential combinational therapeutic approaches for targeting cancer metabolism. Topics: Antineoplastic Agents; Cell Death; Cell Line, Tumor; Citric Acid Cycle; Diacetyl; Electron Transport Complex II; Fumarates; Glutamine; Glutathione; Humans; Indazoles; Malates; Melanoma; Metabolic Flux Analysis; Mitochondria; Models, Biological; NADP; Naphthalenes; Oxidation-Reduction; Pentose Phosphate Pathway; Reactive Oxygen Species; Succinic Acid | 2016 |
Enhanced Photosynthesis and Growth in atquac1 Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance.
Stomata control the exchange of CO2 and water vapor in land plants. Thus, whereas a constant supply of CO2 is required to maintain adequate rates of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. Accordingly, the uptake or release of ions and metabolites from guard cells is necessary to achieve normal stomatal function. The AtQUAC1, an R-type anion channel responsible for the release of malate from guard cells, is essential for efficient stomatal closure. Here, we demonstrate that mutant plants lacking AtQUAC1 accumulated higher levels of malate and fumarate. These mutant plants not only display slower stomatal closure in response to increased CO2 concentration and dark but are also characterized by improved mesophyll conductance. These responses were accompanied by increases in both photosynthesis and respiration rates, without affecting the activity of photosynthetic and respiratory enzymes and the expression of other transporter genes in guard cells, which ultimately led to improved growth. Collectively, our results highlight that the transport of organic acids plays a key role in plant cell metabolism and demonstrate that AtQUAC1 reduce diffusive limitations to photosynthesis, which, at least partially, explain the observed increments in growth under well-watered conditions. Topics: Arabidopsis; Arabidopsis Proteins; Carbon; Carbon Dioxide; Droughts; Enzymes; Fumarates; Gene Expression Regulation, Plant; Gene Knockout Techniques; Malates; Mesophyll Cells; Mutation; Organic Anion Transporters; Photosynthesis; Plant Leaves; Plant Stomata | 2016 |
Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.
Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH < pK). Steady states were achieved with different extracellular levels of fumaric acid, obtained by adding different amounts of fumaric acid to the feed medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed. Topics: Aerobiosis; Animal Feed; Anti-Bacterial Agents; Aspergillus niger; Biomass; Bioreactors; Cell Membrane; Dicarboxylic Acid Transporters; Dicarboxylic Acids; Fumarates; Glucose; Hydrogen-Ion Concentration; Malates; Oxygen; Permeability; Saccharomyces cerevisiae; Succinic Acid | 2016 |
Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species.
Plant roots exude numerous metabolites into the soil that influence nutrient availability. Although root exudate composition is hypothesized to be under selection in low fertility soils, few studies have tested this hypothesis in a phylogenetic framework. In this study, we examined root exudates of three pairs of Helianthus species chosen as phylogenetically-independent contrasts with respect to native soil nutrient availability. Under controlled environmental conditions, seedlings were grown to the three-leaf-pair stage, then transferred to either high or low nutrient treatments. After five days of nutrient treatments, we used gas chromatography-mass spectrometry for analysis of root exudates, and detected 37 metabolites across species. When compared in the high nutrient treatment, species native to low nutrient soils exhibited overall higher exudation than their sister species native to high nutrient soils in all three species pairs, providing support for repeated evolutionary shifts in response to native soil fertility. Species native to low nutrient soils and those native to high nutrient soils responded similarly to low nutrient treatments with increased exudation of organic acids (fumaric, citric, malic acids) and glucose, potentially as a mechanism to enhance nutrition acquisition. However, species native to low nutrient soils also responded to low nutrient treatments with a larger decrease in exudation of amino acids than species native to high nutrient soils in all three species pairs. This indicates that species native to low nutrient soils have evolved a unique sensitivity to changes in nutrient availability for some, but not all, root exudates. Overall, these repeated evolutionary divergences between species native to low nutrient soils and those native to high nutrient soils provide evidence for the adaptive value of root exudation, and its plasticity, in contrasting soil environments. Topics: Adaptation, Physiological; Biological Evolution; Citric Acid; Ecosystem; Fumarates; Gas Chromatography-Mass Spectrometry; Glucose; Helianthus; Malates; Phylogeny; Plant Growth Regulators; Plant Roots; Principal Component Analysis; Soil | 2016 |
Quantification of fumarate and investigation of endogenous and exogenous fumarate stability in rat plasma by LC-MS/MS.
Fumaric acid is a commonly used excipient in pharmaceutical products. It is not known if its presence may lead to fluctuation of endogenous fumarate levels. An LC-MS/MS method was developed and validated to quantify fumarate in support of a toxicokinetics study.. Stability evaluation showed that endogenous fumarate was stable for 6 h at room temperature, while exogenously added fumaric acid was converted to malate within 1 h due to the presence of fumarase. Citric acid, a fumarase inhibitor, prevented the conversion of added fumaric acid in rat plasma.. The method was validated in citric acid stabilized rat plasma using a surrogate matrix approach. A discrepancy in stability was observed between endogenous fumarate and exogenously added fumaric acid. Topics: Animals; Carbon Radioisotopes; Chromatography, High Pressure Liquid; Citric Acid; Drug Stability; Fumarate Hydratase; Fumarates; Isotope Labeling; Malates; Quality Control; Rats; Tandem Mass Spectrometry; Temperature | 2016 |
Nematicidal Activity of Kojic Acid Produced by Aspergillus oryzae against Meloidogyne incognita.
The fungal strain EML-DML3PNa1 isolated from leaf of white dogwood (Cornus alba L.) showed strong nematicidal activity with juvenile mortality of 87.6% at a concentration of 20% fermentation broth filtrate at 3 days after treatment. The active fungal strain was identified as Aspergillus oryzae, which belongs to section Flavi, based on the morphological characteristics and sequence analysis of the ITS rDNA, calmodulin (CaM), and β-tubulin (BenA) genes. The strain reduced the pH value to 5.62 after 7 days of incubation. Organic acid analysis revealed the presence of citric acid (515.0 mg/kg), malic acid (506.6 mg/kg), and fumaric acid (21.7 mg/kg). The three organic acids showed moderate nematicidal activities, but the mixture of citric acid, malic acid, and fumaric acid did not exhibit the full nematicidal activity of the culture filtrate of EML- DML3PNa1. Bioassay-guided fractionation coupled with (1)H- and (13)C-NMR and EI-MS analyses led to identification of kojic acid as the major nematicidal metabolite. Kojic acid exhibited dose-dependent mortality and inhibited the hatchability of M. incognita, showing EC50 values of 195.2 µg/ml and 238.3 µg/ml, respectively, at 72 h postexposure. These results suggest that A. oryzae EML-DML3PNa1 and kojic acid have potential as a biological control agent against M. incognita. Topics: Animals; Antinematodal Agents; Antioxidants; Aspergillus oryzae; Calmodulin; Citric Acid; Cornus; Culture Media; Fermentation; Fumarates; Malates; Polymerase Chain Reaction; Pyrones; Sequence Analysis, DNA; Tubulin; Tylenchoidea | 2016 |
Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination.
Bioavailability of heavy metals can be modified by different root exudates. Among them, low molecular weight organic acids (LMWOAs) play an important role in this process. Three plant species (Poa annua, Medicago polymorpha and Malva sylvestris), potentially used for phytoremediation, have been assessed for both metal uptake and LMWOAs excretion in contaminated environments with different concentrations of Cd, Cu and Zn. The experiments have been carried out in washed sand and in three contaminated soils where two organic amendments were added (biosolid compost and alperujo compost). The most abundant LMWOAs excreted by all studied plants were oxalic and malic acids, although citric and fumaric acids were also detected. The general tendency was that plants responded to an increase of heavy metal stress releasing higher amounts of LMWOAs. This is an efficient exclusion mechanism reducing the metal uptake and allowing the plant growth at high levels of contamination. In the experiment using wash sand as substrate, the organic acids composition and quantity depended mainly on plant species and metal contamination. M. polymorpha was the species that released the highest concentrations of LMWOAs, both in sand and in soils with no amendment addition, whereas a decrease of these acids was observed with the addition of amendments. Our results established a clear effect of organic matter on the composition and total amount of LMWOAs released. The increase of organic matter and nutrients, through amendments, improved the soil quality reducing phytotoxicity. As a result, organic acids exudates decreased and were solely composed of oxalic acid (except for M. polymorpha). The release of LMWOAs has proved to be an important mechanism against heavy metal stress, unique to each species and modifiable by means of organic amendment addition. Topics: Biodegradation, Environmental; Citric Acid; Fumarates; Magnoliopsida; Malates; Malva; Medicago; Metals, Heavy; Oxalic Acid; Plant Roots; Poaceae; Silicon Dioxide; Soil; Soil Pollutants | 2016 |
Quantitation of Compounds in Wine Using (1)H NMR Spectroscopy: Description of the Method and Collaborative Study.
To examine whether NMR analysis is a suitable method for the quantitative determination of wine components, an international collaborative trial was organized to evaluate the method according to the international regulations and guidelines of the German Institute for Standardization/International Organization for Standardization, AOAC INTERNATIONAL, the International Union of Pure and Applied Chemistry, and the International Organization of Vine and Wine. Sugars such as glucose; acids such as malic, acetic, fumaric, and shikimic acids (the latter two as minor components); and sorbic acid, a preservative, were selected for the exemplary quantitative determination of substances in wine. Selection criteria for the examination of sample material included different NMR spectral signal types (singlet and multiplet), as well as the suitability of the proposed substances for manual integration at different levels of challenge (e.g., interference as a result of the necessary suppression of a water signal or the coverage of different typical wine concentration ranges for a selection of major components, minor components, and additives). To show that this method can be universally applied, NMR measurement and the method of evaluation were not strictly elucidated. Fifteen international laboratories participated in the collaborative trial and determined six parameters in 10 samples. The values, in particular the reproducibility SD (SR), were compared with the expected Horwitz SD (SH) by forming the quotient SR/SH (i.e., the HorRat value). The resulting HorRat values of most parameters were predominantly between 0.6 and 1.5, and thus of an acceptable range. Topics: Acetates; Fumarates; Glucose; Laboratories; Malates; Proton Magnetic Resonance Spectroscopy; Shikimic Acid; Sorbic Acid; Wine | 2016 |
FmRα analysis: Rapid and direct estimation of relaxation and kinetic parameters from dynamic nuclear polarization time courses.
To introduce a direct method for estimating relaxation and kinetic parameter values from rapid dissolution dynamic nuclear polarization (RD-DNP) NMR time courses.. The analysis relied on a kinetic model that is often used to analyze data in these studies-a unidirectional (bio)chemical reaction with rate constant k1 , coupled to longitudinal relaxation of the magnetization of substrate and product that is characterized by the time constant T1 . The latter value was estimated from the width of the product curve (peak) at the height α relative to the maximum height. We showed α ∼ 0.8 under most conditions, so we measured the interval between the falling and rising parts of the curve at the relative height 0.8. We called this the "fall-minus-rise time at height α," or FmRα , and found that FmR0.8 ∼ T1 . The ratio β = (product signal/substrate signal) when the product is maximal was shown to be equal to k1 T1 . Therefore, k1 = β/FmR0.8 .. FmRα analysis was demonstrated with (13) C NMR RD-DNP data recorded from hemolysates and from previously published data.. FmRα analysis enables immediate estimates of kinetic and relaxation parameters from (13) C NMR RD-DNP data. The values can be used as initial estimates in more extensive computer-based data-regression analysis. Topics: Animals; Ascorbic Acid; Carbon Isotopes; Fumarates; Glutathione; Humans; Kinetics; Lactic Acid; Magnetic Resonance Spectroscopy; Malates; Mice; Models, Chemical; Models, Statistical; Pyruvic Acid | 2015 |
Bioconversion of fumaric acid to L-malic acid by the bacteria of the genus Nocardia.
The bacterial strains of the genus Nocardia were used for the bioconversion of fumaric acid to L-malic acid. The ability of the bacterial strain Nocardia sp. CCM 4837/A to produce L-malic acid from fumaric acid was investigated under various conditions. The optimal temperature for the bioconversion was approximately 37 °C, and the optimal pH was around 8.0. The addition of an inductor (fumarate salt) to the fermentation medium was necessary to enhance enzyme activity. The presence of detergent Triton X-100 (0.02-0.1 %) in the reaction mixture rapidly increased the enzyme activity of fumarase. The specific fumarase activity of intact cells Nocardia sp. CCM 4837/A increased from 2.8 to 75 U/mg after optimising the experimental conditions described here. Pretreatment of the Nocardia cells with malonate was not necessary because succinate was not detected as a by-product under our experimental conditions. Topics: Fumarate Hydratase; Fumarates; Malates; Nocardia | 2015 |
Allosteric substrate inhibition of Arabidopsis NAD-dependent malic enzyme 1 is released by fumarate.
Plant mitochondria can use L-malate and fumarate, which accumulate in large levels, as respiratory substrates. In part, this property is due to the presence of NAD-dependent malic enzymes (NAD-ME) with particular biochemical characteristics. Arabidopsis NAD-ME1 exhibits a non-hyperbolic behavior for the substrate L-malate, and its activity is strongly stimulated by fumarate. Here, the possible structural connection between these properties was explored through mutagenesis, kinetics, and fluorescence studies. The results indicated that NAD-ME1 has a regulatory site for L-malate that can also bind fumarate. L-Malate binding to this site elicits a sigmoidal and low substrate-affinity response, whereas fumarate binding turns NAD-ME1 into a hyperbolic and high substrate affinity enzyme. This effect was also observed when the allosteric site was either removed or altered. Hence, fumarate is not really an activator, but suppresses the inhibitory effect of l-malate. In addition, residues Arg50, Arg80 and Arg84 showed different roles in organic acid binding. These residues form a triad, which is the basis of the homo and heterotrophic effects that characterize NAD-ME1. The binding of L-malate and fumarate at the same allosteric site is herein reported for a malic enzyme and clearly indicates an important role of NAD-ME1 in processes that control flow of C4 organic acids in Arabidopsis mitochondrial metabolism. Topics: Allosteric Site; Arabidopsis; Fumarates; Kinetics; Malate Dehydrogenase; Malates; Mitochondria; Molecular Sequence Data; NAD | 2015 |
The evolution of Jen3 proteins and their role in dicarboxylic acid transport in Yarrowia.
Jen proteins in yeast are involved in the uptake of mono/dicarboxylic acids. The Jen1 subfamily transports lactate and pyruvate, while the Jen2 subfamily transports fumarate, malate, and succinate. Yarrowia lipolytica has six JEN genes: YALI0B19470g, YALI0C15488g, YALI0C21406g, YALI0D20108g, YALI0D24607g, and YALI0E32901g. Through phylogenetic analyses, we found that these genes represent a new subfamily, Jen3 and that these three Jen subfamilies derivate from three putative ancestral genes. Reverse transcription-PCR. revealed that only four YLJEN genes are expressed and they are upregulated in the presence of lactate, pyruvate, fumarate, malate, and/or succinate, suggesting that they are able to transport these substrates. Analysis of deletion mutant strains revealed that Jen3 subfamily proteins transport fumarate, malate, and succinate. We found evidence that YALI0C15488 encodes the main transporter because its deletion was sufficient to strongly reduce or suppress growth in media containing fumarate, malate, or succinate. It appears that the other YLJEN genes play a minor role, with the exception of YALI0E32901g, which is important for malate uptake. However, the overexpression of each YLJEN gene in the sextuple-deletion mutant strain ΔYLjen1-6 revealed that all six genes are functional and have evolved to transport different substrates with varying degrees of efficacy. In addition, we found that YALI0E32901p transported succinate more efficiently in the presence of lactate or fumarate. Topics: Amino Acid Sequence; Base Sequence; Biological Transport; Dicarboxylic Acid Transporters; Evolution, Molecular; Fumarates; Fungal Proteins; Genes, Fungal; Malates; Molecular Sequence Data; Multigene Family; Phylogeny; Sequence Homology, Amino Acid; Succinic Acid; Yarrowia | 2015 |
Production of fumaric acid from L-malic acid by solvent engineering using a recombinant thermostable fumarase from Thermus thermophilus HB8.
Currently, fumaric acid is produced by catalytic isomerization of maleic acid in aqueous solutions at low pH. Being petroleum based, requiring catalyst, and producing vast amounts of by-products and wastewater, the production of fumaric acid from renewable resources by a "green" process is increasingly attractive. In an aqueous solution, the reaction equilibrium constant of the fumarase-mediated conversion of L-malic acid to fumaric acid is 1:4.2 (fumaric acid to L-malic acid). To shift the reaction equilibrium to fumaric acid, solvent engineering was carried out by varying hydrophilic solvents and their concentrations. Generally, organic solvents may denature fumarase. Therefore, fumarase from Thermus thermophilus was employed to overcome this problem. Ethylene glycol was found more suitable than other solvents. This fumarase was shown to be more stable in 50% than in 70% ethylene glycol. Therefore, a preparation was carried out in 50% ethylene glycol. Under this condition, 54.7% conversion was observed using fumarase for transforming 1 mmol L-malic acid. After precipitation by adapting the pH, and washing to remove residual solvent and substrate, 27% total yield was obtained with 99% purity. The results demonstrated that the alternative green route to produce bio-based fumaric acid via L-malic acid is feasible and viable. Topics: Bacterial Proteins; Biocatalysis; Enzyme Stability; Fumarate Hydratase; Fumarates; Malates; Solvents; Thermus thermophilus | 2015 |
Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene.
Disruption of the Krebs cycle is a hallmark of cancer. IDH1 and IDH2 mutations are found in many neoplasms, and germline alterations in SDH genes and FH predispose to pheochromocytoma/paraganglioma and other cancers. We describe a paraganglioma family carrying a germline mutation in MDH2, which encodes a Krebs cycle enzyme. Whole-exome sequencing was applied to tumor DNA obtained from a man age 55 years diagnosed with multiple malignant paragangliomas. Data were analyzed with the two-sided Student's t and Mann-Whitney U tests with Bonferroni correction for multiple comparisons. Between six- and 14-fold lower levels of MDH2 expression were observed in MDH2-mutated tumors compared with control patients. Knockdown (KD) of MDH2 in HeLa cells by shRNA triggered the accumulation of both malate (mean ± SD: wild-type [WT] = 1±0.18; KD = 2.24±0.17, P = .043) and fumarate (WT = 1±0.06; KD = 2.6±0.25, P = .033), which was reversed by transient introduction of WT MDH2 cDNA. Segregation of the mutation with disease and absence of MDH2 in mutated tumors revealed MDH2 as a novel pheochromocytoma/paraganglioma susceptibility gene. Topics: Citric Acid Cycle; DNA, Neoplasm; Down-Regulation; Exome; Fumarates; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Genetic Predisposition to Disease; Germ-Line Mutation; HeLa Cells; Humans; Malate Dehydrogenase; Malates; Male; Middle Aged; Paraganglioma; Pheochromocytoma; Sequence Analysis, DNA | 2015 |
C4-dicarboxylic acid production by overexpressing the reductive TCA pathway.
As C4-dicarboxylic acids could replace C4-petrochemicals, the reductive tricarboxylic acid (TCA) pathway was overexpressed in Pichia pastoris for production of the C4-dicarboxylic acids. Three expression cassettes which carried the pyruvate carboxylase gene (pc), the cytoplasmic malate dehydrogenase gene (mdh1) and the retargeted fumarase gene (Tfum) were integrated into the chromosomal DNA of P. pastoris GS115 alone or jointly. Multicopy integrations were screened using quantitative PCR for C4-dicarboxylic acid overaccumulation. The results showed that the highest titer in 96 h of fumaric, malic and succinic acid (0.76, 42.28 and 9.42 g l(-1)) was obtained by co-expression of pc and mdh1 in P. pastoris. This is the first report about multiple genes engineered in P. pastoris for C4-dicarboxylic acid production. The strain Pp-PC-MDH1, moreover, has a significant potential to produce malic acid in aerobic conditions. Topics: Citric Acid Cycle; Dicarboxylic Acids; Fumarate Hydratase; Fumarates; Genome, Bacterial; Homologous Recombination; Malate Dehydrogenase; Malates; Metabolic Engineering; Methanol; Pichia; Pyruvate Carboxylase | 2015 |
Targeted Metabolomic Analysis of Head and Neck Cancer Cells Using High Performance Ion Chromatography Coupled with a Q Exactive HF Mass Spectrometer.
In this study, we have demonstrated a targeted metabolomics method for analysis of cancer cells, based on high-performance ion chromatography (IC) separation, Q Exactive HF MS for high-resolution and accurate-mass (HR/AM) measurement and the use of stable isotope-labeled internal standards for absolute quantitation. Our method offers great technical advantages for metabolite analysis, including exquisite sensitivity, high speed and reproducibility, and wide dynamic range. The high-performance IC provided fast separation of cellular metabolites within 20 min and excellent resolving power for polar molecules including many isobaric metabolites. The IC/Q Exactive HF MS achieved wide dynamic ranges of 5 orders of magnitude for six targeted metabolites, pyruvate, succinic acid, malic acid, citric acid, fumaric acid, and alpha-ketoglutaric acid, with R(2) ≈ 0.99. Using this platform, metabolites can be simultaneously quantified from low fmol/μL to nmol/μL levels in cellular samples. The high flow rate IC at 380 μL/min has shown excellent reproducibility for a large set of samples (150 injections), with minimal variations of retention time (SD < ± 0.03 min). In addition, the IC-MS-based approach acquires targeted and global metabolomic data in a same analytical run, and the use of stable isotope-labeled standards facilitates accurate quantitation of targeted metabolites in large-scale metabolomics analysis. This metabolomics approach has been successfully applied to analysis of targeted metabolites in head and neck cancer cells as well as cancer stem-like cells (CSCs), and the findings indicate that the metabolic phenotypes may be distinct between high and low invasive head and neck cancer cells and between CSCs and non-SCCs. Topics: Chromatography, High Pressure Liquid; Citric Acid; Fumarates; Head and Neck Neoplasms; Humans; Ketoglutaric Acids; Malates; Mass Spectrometry; Metabolomics; Pyruvic Acid; Succinic Acid | 2015 |
Efficient aspartic acid production by a psychrophile-based simple biocatalyst.
We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds. Topics: Aspartate Ammonia-Lyase; Aspartic Acid; Biocatalysis; Biotechnology; Enzyme Stability; Equipment Reuse; Escherichia coli; Fumarate Hydratase; Fumarates; Hot Temperature; Malates; Shewanella | 2015 |
Characteristics of organic acids in the fruit of different pumpkin species.
The aim of the research was to determine the composition of organic acids in fruit of different cultivars of three pumpkin species. The amount of acids immediately after fruit harvest and after 3 months of storage was compared. The content of organic acids in the examined pumpkin cultivars was assayed using the method of high performance liquid chromatography (HPLC). Three organic acids (citric acid, malic acid, and fumaric acid) were identified in the cultivars, whose content considerably varied depending on a cultivar. Three-month storage resulted in decreased content of the acids in the case of cultivars belonging to Cucurbita maxima and Cucurbita pepo species, while a slight increase was recorded for Cucurbita moschata species. Topics: Citric Acid; Cucurbita; Fruit; Fumarates; Malates; Plant Extracts | 2014 |
The first insight into the metabolite profiling of grapes from three Vitis vinifera L. cultivars of two controlled appellation (DOC) regions.
The characterization of the metabolites accumulated in the grapes of specific cultivars grown in different climates is of particular importance for viticulturists and enologists. In the present study, the metabolite profiling of grapes from the cultivars, Alvarinho, Arinto and Padeiro de Basto, of two Portuguese Controlled Denomination of Origin (DOC) regions (Vinho Verde and Lisboa) was investigated by gas chromatography-coupled time-of-flight mass spectrometry (GC-TOF-MS) and an amino acid analyzer. Primary metabolites, including sugars, organic acids and amino acids, and some secondary metabolites were identified. Tartaric and malic acids and free amino acids accumulated more in grapes from vines of the DOC region of Vinho Verde than DOC Lisboa, but a principal component analysis (PCA) plot showed that besides the DOC region, the grape cultivar also accounted for the variance in the relative abundance of metabolites. Grapes from the cultivar, Alvarinho, were particularly rich in malic acid and tartaric acids in both DOC regions, but sucrose accumulated more in the DOC region of Vinho Verde. Topics: Amino Acids; Chromatography, Gas; Citric Acid; Fructose; Fruit; Fumarates; Geography; Glucose; Malates; Maleates; Mass Spectrometry; Metabolome; Metabolomics; Portugal; Principal Component Analysis; Species Specificity; Succinic Acid; Sucrose; Tartrates; Vitis | 2014 |
Opposite variations in fumarate and malate dominate metabolic phenotypes of Arabidopsis salicylate mutants with abnormal biomass under chilling.
In chilling conditions (5°C), salicylic acid (SA)-deficient mutants (sid2, eds5 and NahG) of Arabidopsis thaliana produced more biomass than wild type (Col-0), whereas the SA overproducer cpr1 was extremely stunted. The hypothesis that these phenotypes were reflected in metabolism was explored using 600 MHz (1) H nuclear magnetic resonance (NMR) analysis of unfractionated polar shoot extracts. Biomass-related metabolic phenotypes were identified as multivariate data models of these NMR 'fingerprints'. These included principal components that correlated with biomass. Also, partial least squares-regression models were found to predict the relative size of plants in previously unseen experiments in different light intensities, or relative size of one genotype from the others. The dominant signal in these models was fumarate, which was high in SA-deficient mutants, intermediate in Col-0 and low in cpr1 at 5°C. Among signals negatively correlated with biomass, malate was prominent. Abundance of transcripts of the FUM2 cytosolic fumarase (At5g50950) showed strong positive correlation with fumarate levels and with biomass, whereas no significant differences were found for the FUM1 mitochondrial fumarase (At2g47510). It was confirmed that the morphological effects of SA under chilling find expression in the metabolome, with a role of fumarate highlighted. Topics: Arabidopsis; Arabidopsis Proteins; Biomass; Cold Temperature; Fumarates; Gene Expression Regulation, Plant; Genotype; Malates; Metabolome; Models, Theoretical; Mutation; Phenotype; Plant Leaves; Plant Shoots; Plants, Genetically Modified; Salicylic Acid | 2014 |
[Determination of organic acids in rice wine by ion-exclusion chromatography].
An ion-exclusion chromatographic method for the simultaneous determination of organic acids in rice wine was developed. An IC-Pak Ion Exclusion column (300 mm x 7.8 mm, 7 microm) was used at 50 degrees C. The mobile phases were H2SO4 (phase A) and acetonitrile (phase B) (98:2, v/v) at a flow rate of 0.5 mL/min. The gradient elution program was as follows: 0-40 min, 0.01 mol/L H2SO4 to 0.02 mol/L H2SO4; 40-50 min, 0.01 mol/L H2SO4. The injection volume was 10 microL. The detection wavelength was set at 210 nm. The results showed that oxalic acid, maleic acid, citric acid, tartaric acid, malic acid, ascorbic acid, succinic acid, lactic, fumaric acid, acetic acid, propionic acid, isobutyric acid and butyric acid were completely separated and determined in 30 min. The linear correlation coefficients were above 0.999 7 in the range of 0.001- 1.000 g/L. Under the optimized conditions, the recoveries of organic acids in rice wine were in the range of 93.4% - 103.8% with the relative standard deviations (RSDs, n = 5) of 0.1% - 1.5%. This method is feasible, convenient, fast, accurate and applicable for the quantitative analysis of the organic acids in rice wine. Topics: Acids; Chromatography, Gel; Fumarates; Malates; Maleates; Oryza; Oxalic Acid; Tartrates; Wine | 2014 |
High-level production of recombinant trypsin in transgenic rice cell culture through utilization of an alternative carbon source and recycling system.
Productivity of recombinant bovine trypsin using a rice amylase 3D promoter has been studied in transgenic rice suspension culture. Alternative carbon sources were added to rice cell suspension cultures in order to improve the production of recombinant bovine trypsin. It was demonstrated that addition of alternative carbon sources such as succinic acid, fumaric acid and malic acid in the culture medium could increase the productivity of recombinant bovine trypsin 3.8-4.3-fold compared to those in the control medium without carbon sources. The highest accumulated trypsin reached 68.2 mg/L on day 5 in the culture medium with 40 mM fumaric acid. The feasibility of repeated use of the cells for recombinant trypsin production was tested in transgenic rice cell suspension culture with the culture medium containing the combination of variable sucrose concentration and 40 mM fumaric acid. Among the used combinations, the combination of 1% sucrose and 40 mM fumaric acid resulted in a yield of up to 53 mg/L five days after incubation. It also increased 31% (W/W) of dry cell weight and improved 43% of cell viability compared to that in control medium without sucrose. Based on these data, recycling of the trypsin production process with repeated 1% sucrose and 40 mM fumaric acid supplying-harvesting cycles was developed in flask scale culture. Recombinant bovine trypsin could be stably produced with a yield of up to 53-39 mg/L per cycle during five recycling cycles. Topics: Amylases; Animals; Carbon; Cattle; Cell Culture Techniques; Cells, Cultured; Culture Media; Fumarates; Industrial Microbiology; Malates; Oryza; Plant Proteins; Plants, Genetically Modified; Promoter Regions, Genetic; Recombinant Fusion Proteins; Succinic Acid; Sucrose; Suspensions; Trypsin | 2014 |
Long-lived states of magnetically equivalent spins populated by dissolution-DNP and revealed by enzymatic reactions.
Hyperpolarization by dissolution dynamic nuclear polarization (D-DNP) offers a way of enhancing NMR signals by up to five orders of magnitude in metabolites and other small molecules. Nevertheless, the lifetime of hyperpolarization is inexorably limited, as it decays toward thermal equilibrium with the nuclear spin-lattice relaxation time. This lifetime can be extended by storing the hyperpolarization in the form of long-lived states (LLS) that are immune to most dominant relaxation mechanisms. Levitt and co-workers have shown how LLS can be prepared for a pair of inequivalent spins by D-DNP. Here, we demonstrate that this approach can also be applied to magnetically equivalent pairs of spins such as the two protons of fumarate, which can have very long LLS lifetimes. As in the case of para-hydrogen, these hyperpolarized equivalent LLS (HELLS) are not magnetically active. However, a chemical reaction such as the enzymatic conversion of fumarate into malate can break the magnetic equivalence and reveal intense NMR signals. Topics: Biochemical Phenomena; Enzymes; Fumarates; Magnetic Resonance Spectroscopy; Malates; Time Factors | 2014 |
Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
Ischaemia-reperfusion injury occurs when the blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death and aberrant immune responses through the generation of mitochondrial reactive oxygen species (ROS). Although mitochondrial ROS production in ischaemia reperfusion is established, it has generally been considered a nonspecific response to reperfusion. Here we develop a comparative in vivo metabolomic analysis, and unexpectedly identify widely conserved metabolic pathways responsible for mitochondrial ROS production during ischaemia reperfusion. We show that selective accumulation of the citric acid cycle intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase, which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. After reperfusion, the accumulated succinate is rapidly re-oxidized by succinate dehydrogenase, driving extensive ROS generation by reverse electron transport at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo ischaemia-reperfusion injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of ischaemia-reperfusion injury. Furthermore, these findings reveal a new pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation after subsequent reperfusion is a potential therapeutic target to decrease ischaemia-reperfusion injury in a range of pathologies. Topics: Adenosine Monophosphate; Animals; Aspartic Acid; Citric Acid Cycle; Disease Models, Animal; Electron Transport; Electron Transport Complex I; Fumarates; Ischemia; Malates; Male; Metabolomics; Mice; Mitochondria; Myocardial Infarction; Myocardium; Myocytes, Cardiac; NAD; Reactive Oxygen Species; Reperfusion Injury; Stroke; Succinate Dehydrogenase; Succinic Acid | 2014 |
Identification of Pseudomonas fluorescens chemotaxis sensory proteins for malate, succinate, and fumarate, and their involvement in root colonization.
Pseudomonas fluorescens Pf0-1 exhibited chemotactic responses to l-malate, succinate, and fumarate. We constructed a plasmid library of 37 methyl-accepting chemotaxis protein (MCP) genes of P. fluorescens Pf0-1. To identify a MCP for l-malate, the plasmid library was screened using the PA2652 mutant of Pseudomonas aeruginosa PAO1, a mutant defective in chemotaxis to l-malate. The introduction of Pfl01_0728 and Pfl01_3768 genes restored the ability of the PA2652 mutant to respond to l-malate. The Pfl01_0728 and Pfl01_3768 double mutant of P. fluorescens Pf0-1 showed no response to l-malate or succinate, while the Pfl01_0728 single mutant did not respond to fumarate. These results indicated that Pfl01_0728 and Pfl01_3768 were the major MCPs for l-malate and succinate, and Pfl01_0728 was also a major MCP for fumarate. The Pfl01_0728 and Pfl01_3768 double mutant unexpectedly exhibited stronger responses toward the tomato root exudate and amino acids such as proline, asparagine, methionine, and phenylalanine than those of the wild-type strain. The ctaA, ctaB, ctaC (genes of the major MCPs for amino acids), Pfl01_0728, and Pfl01_3768 quintuple mutant of P. fluorescens Pf0-1 was less competitive than the ctaA ctaB ctaC triple mutant in competitive root colonization, suggesting that chemotaxis to l-malate, succinate, and/or fumarate was involved in tomato root colonization by P. fluorescens Pf0-1. Topics: Chemotaxis; Fumarates; Gene Library; Genetic Complementation Test; Malates; Mutation; Plant Roots; Plasmids; Proteins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Solanum lycopersicum; Succinic Acid | 2014 |
Malate and fumarate extend lifespan in Caenorhabditis elegans.
Malate, the tricarboxylic acid (TCA) cycle metabolite, increased lifespan and thermotolerance in the nematode C. elegans. Malate can be synthesized from fumarate by the enzyme fumarase and further oxidized to oxaloacetate by malate dehydrogenase with the accompanying reduction of NAD. Addition of fumarate also extended lifespan, but succinate addition did not, although all three intermediates activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced oxidative stress. The glyoxylate shunt, an anabolic pathway linked to lifespan extension in C. elegans, reversibly converts isocitrate and acetyl-CoA to succinate, malate, and CoA. The increased longevity provided by malate addition did not occur in fumarase (fum-1), glyoxylate shunt (gei-7), succinate dehydrogenase flavoprotein (sdha-2), or soluble fumarate reductase F48E8.3 RNAi knockdown worms. Therefore, to increase lifespan, malate must be first converted to fumarate, then fumarate must be reduced to succinate by soluble fumarate reductase and the mitochondrial electron transport chain complex II. Reduction of fumarate to succinate is coupled with the oxidation of FADH2 to FAD. Lifespan extension induced by malate depended upon the longevity regulators DAF-16 and SIR-2.1. Malate supplementation did not extend the lifespan of long-lived eat-2 mutant worms, a model of dietary restriction. Malate and fumarate addition increased oxygen consumption, but decreased ATP levels and mitochondrial membrane potential suggesting a mild uncoupling of oxidative phosphorylation. Malate also increased NADPH, NAD, and the NAD/NADH ratio. Fumarate reduction, glyoxylate shunt activity, and mild mitochondrial uncoupling likely contribute to the lifespan extension induced by malate and fumarate by increasing the amount of oxidized NAD and FAD cofactors. Topics: Active Transport, Cell Nucleus; Adenosine Triphosphate; Animals; Aspartic Acid; Caenorhabditis elegans; Citric Acid Cycle; Fumarates; Glyoxylates; Green Fluorescent Proteins; Longevity; Malates; Membrane Potential, Mitochondrial; Models, Biological; Oxidation-Reduction; Oxygen; Oxygen Consumption; RNA Interference | 2013 |
Growth platform-dependent and -independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress.
Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile. Topics: Adaptation, Physiological; Arabidopsis; Brassicaceae; Cell Size; Fumarates; Malates; Phenotype; Plant Leaves; Raffinose; Salt Tolerance; Salt-Tolerant Plants; Soil; Species Specificity; Stress, Physiological | 2013 |
Metabolic behavior and enzymatic aspects of denitrifying EBPR sludge in a continuous-flow anaerobic-anoxic system.
The metabolic aspects of enhanced biological phosphorus removal (EBPR) were investigated for the first time in a continuous-flow anaerobic-anoxic plant fed with acetate, propionate, or substrates which are involved in the tricarboxylic acid and/or glyoxylate cycle, i.e., fumarate, malate, or oxaloacetate, as the sole carbon source. Although the polyphosphate-accumulating organisms (PAOs) population remained stable with any carbon source examined, no typical EBPR metabolism was observed during fumarate, malate, or oxaloacetate utilization. Specific enzymatic activities related to EBPR were determined in activated sludge homogenates and directly correlated with the nutrient metabolic rates. The experimental results indicated the direct involvement of alkaline phosphatase, pyrophosphatase, and exopolyphosphatase in the denitrifying EBPR process. Metabolic aspects of glyoxylate cycle enzymes are discussed with regard to the biomass anaerobic and anoxic activity. Process performance was highly influenced by the kind of substrate utilized, indicating that specific metabolic pathways should be followed to favor efficient EBPR. Topics: Acid Anhydride Hydrolases; Alkaline Phosphatase; Anaerobiosis; Fumarates; Malates; Oxaloacetic Acid; Phosphoric Monoester Hydrolases; Polyphosphates; Pyrophosphatases; Sewage | 2013 |
Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes.
In this study, the simultaneous use of reductive and oxidative routes to produce fumaric acid was explored. The strain FMME003 (Saccharomyces cerevisiae CEN.PK2-1CΔTHI2) exhibited capability to accumulate pyruvate and was used for fumaric acid production. The fum1 mutant FMME004 could produce fumaric acid via oxidative route, but the introduction of reductive route derived from Rhizopus oryzae NRRL 1526 led to lower fumaric acid production. Analysis of the key factors associated with fumaric acid production revealed that pyruvate carboxylase had a low degree of control over the carbon flow to malic acid. The fumaric acid titer was improved dramatically when the heterologous gene RoPYC was overexpressed and 32 μg/L of biotin was added. Furthermore, under the optimal carbon/nitrogen ratio, the engineered strain FMME004-6 could produce up to 5.64 ± 0.16 g/L of fumaric acid. These results demonstrated that the proposed fermentative method is efficient for fumaric acid production. Topics: Biotin; Carbon; Fermentation; Fumarates; Genetic Engineering; Malates; Nitrogen; Oxidation-Reduction; Pyruvate Carboxylase; Saccharomyces cerevisiae; Urea | 2013 |
Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress.
We investigated the effect of Al (400μM) on organic acids secretion, accumulation and metabolism in Plantago almogravensis Franco and Plantago algarbiensis Samp. Al induced a significant reduction on root elongation only in P. algarbiensis. Both species accumulated considerable amounts of Al (>120μgg(-1)) in their tissues, roots exhibiting the highest contents (>900μgg(-1)). Al stimulated malonic acid secretion in P. algarbiensis, while citric, succinic and malic acids were secreted by P. almogravensis. Moreover, Al uptake was accompanied by substantial increases of citric, oxalic, malonic and fumaric acids contents in the plantlets of either species. Overall, the acid metabolizing enzymes were not directly involved in the Al induced organic acid secretion and accumulation. Our data suggest that Al detoxification in P. almogravensis implies both secretion of organic acids from roots and tolerance to high Al tissue concentrations, while in P. algarbiensis only the tolerance mechanism seems to be involved. Topics: Adaptation, Physiological; Aluminum; Biological Transport; Carboxylic Acids; Citric Acid; Fumarates; Inactivation, Metabolic; Malates; Malonates; Oxalic Acid; Plant Growth Regulators; Plant Roots; Plantago; Stress, Physiological; Succinic Acid | 2013 |
Fumarate and cytosolic pH as modulators of the synthesis or consumption of C(4) organic acids through NADP-malic enzyme in Arabidopsis thaliana.
Arabidopsis thaliana is a plant species that accumulates high levels of organic acids and uses them as carbon, energy and reducing power sources. Among the enzymes that metabolize these compounds, one of the most important ones is malic enzyme (ME). A. thaliana contains four malic enzymes (NADP-ME 1-4) to catalyze the reversible oxidative decarboxylation of malate in the presence of NADP. NADP-ME2 is the only one located in the cell cytosol of all Arabidopsis organs providing most of the total NADP-ME activity. In the present work, the regulation of this key enzyme by fumarate was investigated by kinetic assays, structural analysis and a site-directed mutagenesis approach. The final effect of this metabolite on NADP-ME2 forward activity not only depends on fumarate and substrate concentrations but also on the pH of the reaction medium. Fumarate produced an increase in NADP-ME2 activity by binding to an allosteric site. However at higher concentrations, fumarate caused a competitive inhibition, excluding the substrate malate from binding to the active site. The characterization of ME2-R115A mutant, which is not activated by fumarate, confirms this hypothesis. In addition, the reverse reaction (reductive carboxylation of pyruvate) is also modulated by fumarate, but in a different way. The results indicate pH-dependence of the fumarate modulation with opposite behavior on the two activities analyzed. Thereby, the coordinated action of fumarate over the direct and reverse reactions would allow a precise and specific modulation of the metabolic flux through this enzyme, leading to the synthesis or degradation of C(4) compounds under certain conditions. Thus, the physiological context might be exerting an accurate control of ME activity in planta, through changes in metabolite and substrate concentrations and cytosolic pH. Topics: Allosteric Regulation; Allosteric Site; Amino Acid Substitution; Arabidopsis; Arabidopsis Proteins; Carboxylic Acids; Cytosol; Enzyme Activation; Fumarates; Hydrogen-Ion Concentration; Kinetics; Malate Dehydrogenase; Malates; Mutagenesis, Site-Directed; NADP; Protein Structure, Tertiary; Recombinant Fusion Proteins | 2013 |
Development of a continuous bioconversion system using a thermophilic whole-cell biocatalyst.
The heat treatment of recombinant mesophilic cells having heterologous thermophilic enzymes results in the denaturation of indigenous mesophilic enzymes and the elimination of undesired side reactions; therefore, highly selective whole-cell catalysts comparable to purified enzymes can be readily prepared. However, the thermolysis of host cells leads to the heat-induced leakage of thermophilic enzymes, which are produced as soluble proteins, limiting the exploitation of their excellent stability in repeated and continuous reactions. In this study, Escherichia coli cells having the thermophilic fumarase from Thermus thermophilus (TtFTA) were treated with glutaraldehyde to prevent the heat-induced leakage of the enzyme, and the resulting cells were used as a whole-cell catalyst in repeated and continuous reactions. Interestingly, although electron microscopic observations revealed that the cellular structure of glutaraldehyde-treated E. coli was not apparently changed by the heat treatment, the membrane permeability of the heated cells to relatively small molecules (up to at least 3 kDa) was significantly improved. By applying the glutaraldehyde-treated E. coli having TtFTA to a continuous reactor equipped with a cell-separation membrane filter, the enzymatic hydration of fumarate to malate could be operated for more than 600 min with a molar conversion yield of 60% or higher. Topics: Biotechnology; Biotransformation; Enzymes; Escherichia coli; Fixatives; Fumarate Hydratase; Fumarates; Glutaral; Hot Temperature; Malates; Metabolic Engineering; Microscopy, Electron; Recombinant Proteins; Thermus thermophilus | 2013 |
Structural and computational studies of the maleate isomerase from Pseudomonas putida S16 reveal a breathing motion wrapping the substrate inside.
Nicotine is an environmental toxicant in tobacco waste, imposing a serious hazard for human health. Some bacteria including Pseudomonas spp. strains are able to metabolize nicotine to non-toxic compounds. The pyrrolidine pathway of nicotine degradation in Pseudomonas putida S16 has recently been revealed. The maleate isomerase (Pp-Iso) catalyses the last step in nicotine degradation of P. putida S16, the cis-trans isomerization of maleate to fumarate. In this study, we determined the crystal structures of both wild type isomerase by itself and its C200A point mutant in complex with its substrate maleate, to resolutions of 2.95 Å and 2.10 Å respectively. Our structures reveal that Asn17 and Asn169 play critical roles in recognizing the maleate by site-directed mutants' analysis. Surprisingly, our structure shows that the maleate is completely wrapped inside the isomerase. Examination of the structure prompted us to hypothesize that the β2-α2 loop and the β6-α7 loop have a breathing motion that regulates substrate/solvent entry and product departure. Our results of molecular dynamics simulation and enzymatic activity assay are fully consistent with this hypothesis. The isomerase probably uses this breathing motion to prevent the solvent from entering the active site and prohibit unproductive side reactions from happening. Topics: Bacterial Proteins; Biotransformation; cis-trans-Isomerases; Crystallography, X-Ray; DNA Mutational Analysis; Fumarates; Malates; Molecular Dynamics Simulation; Protein Binding; Protein Conformation; Pseudomonas putida | 2013 |
Effect of organic acids and mannanoligosaccharide on excretion of Salmonella typhimurium in experimentally infected growing pigs.
The effect of organic acids and mannanoligosaccharide addition to the diet was assessed in pigs orally inoculated with Salmonella typhimurium. Forty-six growers were distributed among four treatments: Basal Diet (BD); BD+encapsulated organic acids; BD+free organic acids; BD+mannanoligosaccharide. Seroconversion was monitored, and feces and tissue samples were tested for Salmonella isolation. No treatment prevented the carrier state, but a tendency of lower fecal excretion was observed in the group treated with mannanoligosaccharide. Topics: Animals; Carrier State; Citric Acid; Diet; Dietary Supplements; Feces; Formates; Fumarates; Malates; Mannans; Oligosaccharides; Phosphoric Acids; Propionates; Salmonella Infections, Animal; Salmonella typhimurium; Swine; Swine Diseases | 2012 |
Regulation of the metabolite profile by an APC gene mutation in colorectal cancer.
Mutation of the APC gene occurs during the early stages of colorectal cancer development. To obtain new insights into the mechanisms underlying the aberrant activation of the Wnt pathway that accompanies APC mutation, we carried out a gas chromatography-mass spectrometry-based semiquantitative metabolome analysis. In vitro experiments comparing SW480 cells expressing normal APC and truncated APC indicated that the levels of metabolites involved in the latter stages of the intracellular tricarboxylic acid cycle, including succinic acid, fumaric acid, and malic acid, were significantly higher in the SW480 cells expressing the truncated APC. In an in vivo study, we found that the levels of most amino acids were higher in the non-polyp tissues of APC(min/+) mice than in the normal tissues of the control mice and the polyp tissues of APC(min/+) mice. Ribitol, the levels of which were decreased in the polyp lesions of the APC(min/+) mice and the SW480 cells expressing the truncated APC, reduced the growth of SW480 cells with the APC mutation, but did not affect the growth of SW480 transfectants expressing full-length APC. The level of sarcosine was found to be significantly higher in the polyp tissues of APC(min/+) mice than in their non-polyp tissues and the normal tissues of the control mice, and the treatment of SW480 cells with 50 μM sarcosine resulted in a significant increase in their growth rate. These findings suggest that APC mutation causes changes in energetic metabolite pathways and that these alterations might be involved in the development of colorectal cancer. Topics: Adenomatous Polyposis Coli Protein; Amino Acids; Animals; Cell Line, Tumor; Citric Acid Cycle; Colorectal Neoplasms; Fumarates; Gene Expression Regulation, Neoplastic; Genes, APC; Humans; Malates; Metabolomics; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Nude; Mutation; Sarcosine; Succinic Acid; Wnt Signaling Pathway | 2012 |
Mitochondrial stress causes increased succination of proteins in adipocytes in response to glucotoxicity.
2SC [S-(2-succino)-cysteine] is a chemical modification formed by a Michael addition reaction of fumarate with cysteine residues in proteins. Formation of 2SC, termed 'succination' of proteins, increases in adipocytes grown in high-glucose medium and in adipose tissues of Type 2 diabetic mice. However, the metabolic mechanisms leading to increased fumarate and succination of protein in the adipocyte are unknown. Treatment of 3T3 cells with high glucose (30 mM compared with 5 mM) caused a significant increase in cellular ATP/ADP, NADH/NAD+ and Δψm (mitochondrial membrane potential). There was also a significant increase in the cellular fumarate concentration and succination of proteins, which may be attributed to the increase in NADH/NAD+ and subsequent inhibition of tricarboxylic acid cycle NAD+-dependent dehydrogenases. Chemical uncouplers, which dissipated Δψm and reduced the NADH/NAD+ ratio, also decreased the fumarate concentration and protein succination. High glucose plus metformin, an inhibitor of complex I in the electron transport chain, caused an increase in fumarate and succination of protein. Thus excess fuel supply (glucotoxicity) appears to create a pseudohypoxic environment (high NADH/NAD+ without hypoxia), which drives the increase in succination of protein. We propose that increased succination of proteins is an early marker of glucotoxicity and mitochondrial stress in adipose tissue in diabetes. Topics: 3T3 Cells; Adipocytes; Animals; Blotting, Western; Cell Survival; Citric Acid Cycle; Electrophoresis, Gel, Two-Dimensional; Fumarates; Glucose; Hypoxia; Malates; Membrane Potential, Mitochondrial; Mice; Mitochondria; Oxidative Phosphorylation; Oxidative Phosphorylation Coupling Factors; Oxidative Stress; Succinic Acid; Sweetening Agents | 2012 |
Conformational changes upon ligand binding in the essential class II fumarase Rv1098c from Mycobacterium tuberculosis.
rv1098c, an essential gene in Mycobacterium tuberculosis, codes for a class II fumarase. We describe here the crystal structure of Rv1098c in complex with l-malate, fumarate or the competitive inhibitor meso-tartrate. The models reveal that substrate binding promotes the closure of the active site through conformational changes involving the catalytic SS-loop and the C-terminal domain, which likely represents a general feature of this enzyme superfamily. Analysis of ligand-enzyme interactions as well as site-directed mutagenesis suggest Ser318 as one of the two acid-base catalysts. Topics: Biocatalysis; Catalytic Domain; Fumarate Hydratase; Fumarates; Ligands; Malates; Models, Molecular; Mycobacterium tuberculosis; Protein Binding; Tartrates | 2012 |
Magnetic resonance imaging with hyperpolarized [1,4-(13)C2]fumarate allows detection of early renal acute tubular necrosis.
Acute kidney injury (AKI) is a common and important medical problem, affecting 10% of hospitalized patients, and it is associated with significant morbidity and mortality. The most frequent cause of AKI is acute tubular necrosis (ATN). Current imaging techniques and biomarkers do not allow ATN to be reliably differentiated from important differential diagnoses, such as acute glomerulonephritis (GN). We investigated whether (13)C magnetic resonance spectroscopic imaging (MRSI) might allow the noninvasive diagnosis of ATN. (13)C MRSI of hyperpolarized [1,4-(13)C(2)]fumarate and pyruvate was used in murine models of ATN and acute GN (NZM2410 mice with lupus nephritis). A significant increase in [1,4-(13)C(2)]malate signal was identified in the kidneys of mice with ATN early in the disease course before the onset of severe histological changes. No such increase in renal [1,4-(13)C(2)]malate was observed in mice with acute GN. The kidney [1-(13)C]pyruvate/[1-(13)C]lactate ratio showed substantial variability and was not significantly decreased in animals with ATN or increased in animals with GN. In conclusion, MRSI of hyperpolarized [1,4-(13)C(2)]fumarate allows the detection of early tubular necrosis and its distinction from glomerular inflammation in murine models. This technique may have the potential to identify a window of therapeutic opportunity in which emerging therapies might be applied to patients with ATN, reducing the need for acute dialysis with its attendant morbidity and cost. Topics: Animals; Carbon Isotopes; Early Diagnosis; Folic Acid; Fumarates; Humans; Kidney; Kidney Tubular Necrosis, Acute; Kinetics; Lupus Nephritis; Magnetic Resonance Imaging; Malates; Mice; Mice, Inbred C57BL; Pyruvic Acid | 2012 |
Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species.
Sugars, organic acids, and total phenolic content in fruit of 25 wild and cultivated berry species were identified and quantified with high-performance liquid chromatograph. The composition of sugars, organic acids, and total phenolic compounds in various species of Vaccinium, Rubus, Ribes, and Fragaria genus was evaluated. Additonally, total phenolics of less known berry species of the Morus, Amelanchier, Sorbus, Sambucus, Rosa, Lycium, Actinidia, and Aronia genus were determined in wild growing as well as in cultivated fruits. Significant differences in the concentration of sugars and organic acids were detected among the berry species. Glucose and fructose were the most abundant sugars in berry fruits and the major organic acids were malic and citric acid. However, in kiwi fruit, sucrose represented as much as 71.9% of total sugars. Sorbitol has been detected and quantified in chokeberry, rowanberry, and eastern shadbush fruit. The highest content of total analyzed sugars was determined in rowanberry fruit, followed by dog rose, eastern shadbush, hardy kiwifruit, American cranberry, chokeberry, and jostaberry fruit. Rowanberry stands out as the fruit with the highest content of total analyzed organic acids, followed by jostaberry, lingonberry, red gooseberry, hardy kiwifruit, and black currant. The berries of white gooseberry, black currant, red currant, and white currant had the lowest sugar/organic acid ratio and were thus perceptively the sourest species analyzed. On the other hand, the species with highest sugar/organic acid ratio were goji berry, eastern shadbush, black mulberry, and wild grown blackberry. The highest amounts of total phenols were quantified in chokeberry fruit. Wild strawberry, raspberry, and blackberry had 2- to 5-fold more total phenolics compared to cultivated plants.. The fruit of analyzed berry species contained different levels of sugars, organic acids, and total phenolics. Moreover, it has been demonstrated that wild grown species generally contain more phenolics than cultivated ones. This information is interesting for nutritionists as well as berry growers and breeders who can promote the cultivation of species and new cultivars with higher phenolic content. Topics: Actinidia; Carbohydrates; Chromatography, High Pressure Liquid; Citric Acid; Fragaria; Fruit; Fumarates; Malates; Phenols; Photinia; Plant Extracts; Ribes; Rosaceae; Sambucus; Shikimic Acid; Sorbus; Tartrates; Vaccinium macrocarpon | 2012 |
Decreasing the mitochondrial synthesis of malate in potato tubers does not affect plastidial starch synthesis, suggesting that the physiological regulation of ADPglucose pyrophosphorylase is context dependent.
Modulation of the malate content of tomato (Solanum lycopersicum) fruit by altering the expression of mitochondrially localized enzymes of the tricarboxylic acid cycle resulted in enhanced transitory starch accumulation and subsequent effects on postharvest fruit physiology. In this study, we assessed whether such a manipulation would similarly affect starch biosynthesis in an organ that displays a linear, as opposed to a transient, kinetic of starch accumulation. For this purpose, we used RNA interference to down-regulate the expression of fumarase in potato (Solanum tuberosum) under the control of the tuber-specific B33 promoter. Despite displaying similar reductions in both fumarase activity and malate content as observed in tomato fruit expressing the same construct, the resultant transformants were neither characterized by an increased flux to, or accumulation of, starch, nor by alteration in yield parameters. Since the effect in tomato was mechanistically linked to derepression of the reaction catalyzed by ADP-glucose pyrophosphorylase, we evaluated whether the lack of effect on starch biosynthesis was due to differences in enzymatic properties of the enzyme from potato and tomato or rather due to differential subcellular compartmentation of reductant in the different organs. The results are discussed in the context both of current models of metabolic compartmentation and engineering. Topics: Carbon Isotopes; Cell Respiration; Fumarates; Glucose-1-Phosphate Adenylyltransferase; Malates; Metabolomics; Mitochondria; Oxidation-Reduction; Plant Tubers; Plants, Genetically Modified; Plastids; RNA Interference; Solanum tuberosum; Starch | 2012 |
Alterations in cellular energy metabolism associated with the antiproliferative effects of the ATM inhibitor KU-55933 and with metformin.
KU-55933 is a specific inhibitor of the kinase activity of the protein encoded by Ataxia telangiectasia mutated (ATM), an important tumor suppressor gene with key roles in DNA repair. Unexpectedly for an inhibitor of a tumor suppressor gene, KU-55933 reduces proliferation. In view of prior preliminary evidence suggesting defective mitochondrial function in cells of patients with Ataxia Telangiectasia (AT), we examined energy metabolism of cells treated with KU-55933. The compound increased AMPK activation, glucose uptake and lactate production while reducing mitochondrial membrane potential and coupled respiration. The stimulation of glycolysis by KU-55933 did not fully compensate for the reduction in mitochondrial functions, leading to decreased cellular ATP levels and energy stress. These actions are similar to those previously described for the biguanide metformin, a partial inhibitor of respiratory complex I. Both compounds decreased mitochondrial coupled respiration and reduced cellular concentrations of fumarate, malate, citrate, and alpha-ketogluterate. Succinate levels were increased by KU-55933 levels and decreased by metformin, indicating that the effects of ATM inhibition and metformin are not identical. These observations suggest a role for ATM in mitochondrial function and show that both KU-55933 and metformin perturb the TCA cycle as well as oxidative phosphorylation. Topics: Antineoplastic Agents; Ataxia Telangiectasia Mutated Proteins; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Citric Acid; Citric Acid Cycle; DNA-Binding Proteins; Fumarates; HeLa Cells; Hep G2 Cells; Humans; Hypoglycemic Agents; Ketoglutaric Acids; Malates; Membrane Potential, Mitochondrial; Metformin; Morpholines; Oxygen Consumption; Phosphorylation; Protein Serine-Threonine Kinases; Pyrones; Succinic Acid; Tumor Suppressor Proteins | 2012 |
Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening.
Despite the fact that the organic acid content of a fruit is regarded as one of its most commercially important quality traits when assessed by the consumer, relatively little is known concerning the physiological importance of organic acid metabolism for the fruit itself. Here, we evaluate the effect of modifying malate metabolism in a fruit-specific manner, by reduction of the activities of either mitochondrial malate dehydrogenase or fumarase, via targeted antisense approaches in tomato (Solanum lycopersicum). While these genetic perturbations had relatively little effect on the total fruit yield, they had dramatic consequences for fruit metabolism, as well as unanticipated changes in postharvest shelf life and susceptibility to bacterial infection. Detailed characterization suggested that the rate of ripening was essentially unaltered but that lines containing higher malate were characterized by lower levels of transitory starch and a lower soluble sugars content at harvest, whereas those with lower malate contained higher levels of these carbohydrates. Analysis of the activation state of ADP-glucose pyrophosphorylase revealed that it correlated with the accumulation of transitory starch. Taken together with the altered activation state of the plastidial malate dehydrogenase and the modified pigment biosynthesis of the transgenic lines, these results suggest that the phenotypes are due to an altered cellular redox status. The combined data reveal the importance of malate metabolism in tomato fruit metabolism and development and confirm the importance of transitory starch in the determination of agronomic yield in this species. Topics: Antisense Elements (Genetics); Fruit; Fumarate Hydratase; Fumarates; Glucose-1-Phosphate Adenylyltransferase; Malate Dehydrogenase; Malates; Phenotype; Plant Proteins; Plants, Genetically Modified; RNA, Plant; Solanum lycopersicum; Starch | 2011 |
A methylaspartate cycle in haloarchaea.
Access to novel ecological niches often requires adaptation of metabolic pathways to cope with new environments. For conversion to cellular building blocks, many substrates enter central carbon metabolism via acetyl-coenzyme A (acetyl-CoA). Until now, only two such pathways have been identified: the glyoxylate cycle and the ethylmalonyl-CoA pathway. Prokaryotes in the haloarchaea use a third pathway by which acetyl-CoA is oxidized to glyoxylate via the key intermediate methylaspartate. Glyoxylate condensation with another acetyl-CoA molecule yields malate, the final assimilation product. This cycle combines reactions that originally belonged to different metabolic processes in different groups of prokaryotes, which suggests lateral gene transfer and evolutionary tinkering of acetate assimilation. Moreover, it requires elevated intracellular glutamate concentrations, as well as coupling carbon assimilation with nitrogen metabolism. Topics: Acetates; Acetyl Coenzyme A; Archaeal Proteins; Fumarates; Gene Transfer, Horizontal; Genes, Archaeal; Glutamic Acid; Glyoxylates; Haloarcula marismortui; Malates; Maleates; Metabolic Networks and Pathways; N-Methylaspartate; Oxidation-Reduction; Proteome; Succinic Acid | 2011 |
Metabolomic analysis of liver and skeletal muscle tissues in C57BL/6J and DBA/2J mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been demonstrated to have the adverse effects on human health. In this study, we applied a metabolomic approach in conjunction with unsupervised and supervised machine learning methods to investigate the toxic effects of TCDD. By using liquid chromatography/quadrupole time-of-flight mass spectrometry, non-targeted metabolomic analysis revealed the metabolic signatures of the toxicity in aryl hydrocarbon receptor (AhR)-high affinity C57BL/6J (C6) mice as well as low affinity strain-DBA/2J (D2) mice. Lysophospholipids and long chain fatty acids were strikingly elevated in the C6 mice exposed to TCDD in both liver and skeletal muscle tissues. Meanwhile, the level of palmitoylcarnitine, which is one of the important indicators in fatty acid β-oxidation, increased significantly. Moreover, several nucleosides and amino acids decreased markedly. On the other hand, much less differentiating metabolites were highlighted in another strain-D2 mouse model. Taking liver and skeletal muscle tissues together, the levels of inosine, valine and glutamine decreased significantly. One lysophospholipid and two fatty acids were found to be enhanced. The principal components analysis and support vector machine clustering results also exhibited discriminations in the liver and skeletal muscle tissues of the mice. The obtained results indicated that TCDD could disrupt several metabolic pathways, including fatty acid biosynthesis and amino acid metabolism in both C6 and D2 mice. The increased rate of fatty acid beta-oxidation, however, was only observed in the liver and skeletal muscle tissues of C6 mice. The perturbation of the tricarboxylic acid (TCA) cycle was testified in two strains but the change was much slighter in D2 mice. It was of particular interest to note that the succinate level was enhanced in the liver tissues of both strains, and particularly, the change was up to 11.49-fold in the liver of C6 mice treated with TCDD. Collectively, the discrimination of D2 mice was not as distinct as that of C6 mice when exposed to the same dosage. Furthermore, D2 was confirmed to be less-sensitive rather than resistant to a high dose of TCDD. Topics: Animals; Artificial Intelligence; Body Weight; Citric Acid; Environmental Pollutants; Fumarates; Humans; Liver; Malates; Male; Metabolome; Mice; Mice, Inbred C57BL; Mice, Inbred DBA; Multivariate Analysis; Muscle, Skeletal; Phenotype; Polychlorinated Dibenzodioxins; Principal Component Analysis; Succinic Acid | 2011 |
Identification of C(4)-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1.
Pseudomonas aeruginosa utilizes preferentially C(4)-dicarboxylates such as malate, fumarate, and succinate as carbon and energy sources. We have identified and characterized two C(4)-dicarboxylate transport (Dct) systems in P. aeruginosa PAO1. Inactivation of the dctA(PA1183) gene caused a growth defect of the strain in minimal media supplemented with succinate, fumarate or malate, indicating that DctA has a major role in Dct. However, residual growth of the dctA mutant in these media suggested the presence of additional C(4)-dicarboxylate transporter(s). Tn5 insertion mutagenesis of the ΔdctA mutant led to the identification of a second Dct system, i.e., the DctPQM transporter belonging to the tripartite ATP-independent periplasmic (TRAP) family of carriers. The ΔdctA ΔdctPQM double mutant showed no growth on malate and fumarate and residual growth on succinate, suggesting that DctA and DctPQM are the only malate and fumarate transporters, whereas additional transporters for succinate are present. Using lacZ reporter fusions, we showed that the expression of the dctA gene and the dctPQM operon was enhanced in early exponential growth phase and induced by C(4)-dicarboxylates. Competition experiments demonstrated that the DctPQM carrier was more efficient than the DctA carrier for the utilization of succinate at micromolar concentrations, whereas DctA was the major transporter at millimolar concentrations. To conclude, this is the first time that the high- and low-affinity uptake systems for succinate DctA and DctPQM have been reported to function coordinately to transport C(4)-dicarboxylates and that the alternative sigma factor RpoN and a DctB/DctD two-component system regulates simultaneously the dctA gene and the dctPQM operon. Topics: Bacterial Proteins; Biological Transport; Dicarboxylic Acid Transporters; Fumarates; Gene Expression Regulation, Bacterial; Genes, Regulator; Genes, Reporter; Lac Operon; Malates; Mutagenesis, Insertional; Plasmids; Pseudomonas aeruginosa; RNA Polymerase Sigma 54; Sigma Factor; Succinic Acid | 2011 |
Mitochondrial NAD+-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control.
Anopheles stephensi mitochondrial malic enzyme (ME) emerged as having a relevant role in the provision of pyruvate for the Krebs' cycle because inhibition of this enzyme results in the complete abrogation of oxygen uptake by mitochondria. Therefore, the identification of ME in mitochondria from immortalized A. stephensi (ASE) cells and the investigation of the stereoselectivity of malate analogues are relevant in understanding the physiological role of ME in cells of this important malaria parasite vector and its potential as a possible novel target for insecticide development.. To characterize the mitochondrial ME from immortalized ASE cells (Mos. 43; ASE), mass spectrometry analyses of trypsin fragments of ME, genomic sequence analysis and biochemical assays were performed to identify the enzyme and evaluate its activity in terms of cofactor dependency and inhibitor preference.. The encoding gene sequence and primary sequences of several peptides from mitochondrial ME were found to be highly homologous to the mitochondrial ME from Anopheles gambiae (98%) and 59% homologous to the mitochondrial NADP+-dependent ME isoform from Homo sapiens. Measurements of ME activity in mosquito mitochondria isolated from ASE cells showed that (i) Vmax with NAD+ was 3-fold higher than that with NADP+, (ii) addition of Mg2+ or Mn2+ increased the Vmax by 9- to 21-fold, with Mn2+ 2.3-fold more effective than Mg2+, (iii) succinate and fumarate increased the activity by 2- and 5-fold, respectively, at sub-saturating concentrations of malate, (iv) among the analogs of L-malate tested as inhibitors of the NAD+-dependent ME catalyzed reaction, small (2- to 3-carbons) organic diacids carrying a 2-hydroxyl/keto group behaved as the most potent inhibitors of ME activity (e.g., oxaloacetate, tartronic acid and oxalate).. The biochemical characterization of Anopheles stephensi ME is of critical relevance given its important role in bioenergetics, suggesting that it is a suitable target for insecticide development. Topics: Amino Acid Sequence; Animals; Anopheles; Cations, Divalent; Cell Line; Coenzymes; Enzyme Inhibitors; Fumarates; Kinetics; Magnesium; Malate Dehydrogenase; Malates; Manganese; Mass Spectrometry; Mitochondria; Models, Molecular; Molecular Sequence Data; NAD; NADP; Protein Conformation; Sequence Analysis, DNA; Sequence Homology, Amino Acid; Succinic Acid | 2011 |
Analysis of Arabidopsis with highly reduced levels of malate and fumarate sheds light on the role of these organic acids as storage carbon molecules.
While malate and fumarate participate in a multiplicity of pathways in plant metabolism, the function of these organic acids as carbon stores in C(3) plants has not been deeply addressed. Here, Arabidopsis (Arabidopsis thaliana) plants overexpressing a maize (Zea mays) plastidic NADP-malic enzyme (MEm plants) were used to analyze the consequences of sustained low malate and fumarate levels on the physiology of this C(3) plant. When grown in short days (sd), MEm plants developed a pale-green phenotype with decreased biomass and increased specific leaf area, with thin leaves having lower photosynthetic performance. These features were absent in plants growing in long days. The analysis of metabolite levels of rosettes from transgenic plants indicated similar disturbances in both sd and long days, with very low levels of malate and fumarate. Determinations of the respiratory quotient by the end of the night indicated a shift from carbohydrates to organic acids as the main substrates for respiration in the wild type, while MEm plants use more reduced compounds, like fatty acids and proteins, to fuel respiration. It is concluded that the alterations observed in sd MEm plants are a consequence of impairment in the supply of carbon skeletons during a long dark period. This carbon starvation phenotype observed at the end of the night demonstrates a physiological role of the C(4) acids, which may be a constitutive function in plants. Topics: Arabidopsis; Carbon; Carbon Dioxide; Chlorophyll; Chloroplasts; Fluorescence; Fumarates; Gas Chromatography-Mass Spectrometry; Malates; Microscopy, Electron, Transmission; Phenotype; Plants, Genetically Modified | 2010 |
Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli.
The fermentative metabolism of Escherichia coli was reengineered to efficiently convert glycerol to succinate under anaerobic conditions without the use of foreign genes. Formate and ethanol were the dominant fermentation products from glycerol in wild-type Escherichia coli ATCC 8739, followed by succinate and acetate. Inactivation of pyruvate formate-lyase (pflB) in the wild-type strain eliminated the production of formate and ethanol and reduced the production of acetate. However, this deletion slowed growth and decreased cell yields due to either insufficient energy production or insufficient levels of electron acceptors. Reversing the direction of the gluconeogenic phosphoenolpyruvate carboxykinase reaction offered an approach to solve both problems, conserving energy as an additional ATP and increasing the pool of electron acceptors (fumarate and malate). Recruiting this enzyme through a promoter mutation (pck*) to increase expression also increased the rate of growth, cell yield, and succinate production. Presumably, the high NADH/NAD(+) ratio served to establish the direction of carbon flow. Additional mutations were also beneficial. Glycerol dehydrogenase and the phosphotransferase-dependent dihydroxyacetone kinase are regarded as the primary route for glycerol metabolism under anaerobic conditions. However, this is not true for succinate production by engineered strains. Deletion of the ptsI gene or any other gene essential for the phosphotranferase system was found to increase succinate yield. Deletion of pflB in this background provided a further increase in the succinate yield. Together, these three core mutations (pck*, ptsI, and pflB) effectively redirected carbon flow from glycerol to succinate at 80% of the maximum theoretical yield during anaerobic fermentation in mineral salts medium. Topics: Acetates; Anaerobiosis; Escherichia coli; Escherichia coli Proteins; Ethanol; Fermentation; Formates; Fumarates; Gene Deletion; Gene Expression; Genetic Engineering; Glycerol; Malates; Metabolic Networks and Pathways; Promoter Regions, Genetic; Succinic Acid | 2010 |
Biochemical characterization of the C4-dicarboxylate transporter DctA from Bacillus subtilis.
Bacterial secondary transporters of the DctA family mediate ion-coupled uptake of C(4)-dicarboxylates. Here, we have expressed the DctA homologue from Bacillus subtilis in the Gram-positive bacterium Lactococcus lactis. Transport of dicarboxylates in vitro in isolated membrane vesicles was assayed. We determined the substrate specificity, the type of cotransported ions, the electrogenic nature of transport, and the pH and temperature dependence patterns. DctA was found to catalyze proton-coupled symport of the four C(4)-dicarboxylates from the Krebs cycle (succinate, fumurate, malate, and oxaloacetate) but not of other mono- and dicarboxylates. Because (i) succinate-proton symport was electrogenic (stimulated by an internal negative membrane potential) and (ii) the divalent anionic form of succinate was recognized by DctA, at least three protons must be cotransported with succinate. The results were interpreted in the light of the crystal structure of the homologous aspartate transporter Glt(Ph) from Pyrococcus horikoshii. Topics: Bacillus subtilis; Bacterial Proteins; Biological Transport; Dicarboxylic Acid Transporters; Dicarboxylic Acids; Fumarates; Gene Expression Regulation, Bacterial; Hydrogen-Ion Concentration; Malates; Substrate Specificity; Succinates; Temperature | 2010 |
Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti.
Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability compared to the wild-type 1021 strain. Here, we present data showing that RD64 is also highly effective in mobilizing P from insoluble sources, such as phosphate rock (PR). Under P-limiting conditions, the higher level of P-mobilizing activity of RD64 than of the 1021 wild-type strain is connected with the upregulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity, and the increased secretion into the growth medium of malic, succinic, and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released larger amounts of another P-solubilizing organic acid, 2-hydroxyglutaric acid, than plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited higher levels of dry-weight production than Mt-1021 plants. Here, we also report that P-starved Mt-RD64 plants show significant increases in both shoot and root fresh weights when compared to P-starved Mt-1021 plants. We discuss how, in a Rhizobium-legume model system, a balanced interplay of different factors linked to bacterial IAA overproduction rather than IAA production per se stimulates plant growth under stressful environmental conditions and, in particular, under P starvation. Topics: Biomass; Fumarates; Indoleacetic Acids; Malates; Medicago truncatula; Phosphates; Root Nodules, Plant; Sinorhizobium meliloti; Succinic Acid | 2010 |
Metabolomics of supragingival plaque and oral bacteria.
Dental caries is initiated by demineralization of the tooth surface through acid production by sugar metabolism of supragingival plaque microflora. To elucidate the sugar metabolic system, we used CE-MS to perform metabolomics of the central carbon metabolism, the EMP pathway, the pentose-phosphate pathway, and the TCA cycle in supra- gingival plaque and representative oral bacteria, Streptococcus and Actinomyces. Supragingival plaque contained all the targeted metabolites in the central carbon metabolism, except erythrose 4-phosphate in the pentose-phosphate pathway. After glucose rinse, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, dihydroxyacetone phosphate, and pyruvate in the EMP pathway and 6-phosphogluconate, ribulose 5-phosphate, and sedoheptulose 7-phosphate in the pentose-phosphate pathway, and acetyl CoA were increased. Meanwhile, 3-phosphoglycerate and phosphoenolpyruvate in the EMP pathway and succinate, fumarate, and malate in the TCA cycle were decreased. These pathways and changes in metabolites observed in supragingival plaque were similar to the integration of metabolite profiles in Streptococcus and Actinomyces. Topics: Acetyl Coenzyme A; Actinomyces; Adult; Bacteriological Techniques; Carbon; Citric Acid Cycle; Dental Plaque; Dihydroxyacetone Phosphate; Female; Fructosediphosphates; Fructosephosphates; Fumarates; Gluconates; Glucose; Glucose-6-Phosphate; Glyceric Acids; Glycolysis; Humans; Malates; Male; Metabolomics; Pentose Phosphate Pathway; Phosphoenolpyruvate; Pyruvic Acid; Ribulosephosphates; Streptococcus; Streptococcus mutans; Succinic Acid; Sugar Phosphates | 2010 |
Functional role of fumarate site Glu59 involved in allosteric regulation and subunit-subunit interaction of human mitochondrial NAD(P)+-dependent malic enzyme.
Here we report on the role of Glu59 in the fumarate-mediated allosteric regulation of the human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD-ME). In the present study, Glu59 was substituted by Asp, Gln or Leu. Our kinetic data strongly indicated that the charge properties of this residue significantly affect the allosteric activation of the enzyme. The E59L enzyme shows nonallosteric kinetics and the E59Q enzyme displays a much higher threshold in enzyme activation with elevated activation constants, K(A,Fum) and alphaK(A,Fum). The E59D enzyme, although retaining the allosteric property, is quite different from the wild-type in enzyme activation. The K(A,Fum) and alphaK(A,Fum) of E59D are also much greater than those of the wild-type, indicating that not only the negative charge of this residue but also the group specificity and side chain interactions are important for fumarate binding. Analytical ultracentrifugation analysis shows that both the wild-type and E59Q enzymes exist as a dimer-tetramer equilibrium. In contrast to the E59Q mutant, the E59D mutant displays predominantly a dimer form, indicating that the quaternary stability in the dimer interface is changed by shortening one carbon side chain of Glu59 to Asp59. The E59L enzyme also shows a dimer-tetramer model similar to that of the wild-type, but it displays more dimers as well as monomers and polymers. Malate cooperativity is not significantly notable in the E59 mutant enzymes, suggesting that the cooperativity might be related to the molecular geometry of the fumarate-binding site. Glu59 can precisely maintain the geometric specificity for the substrate cooperativity. According to the sequence alignment analysis and our experimental data, we suggest that charge effect and geometric specificity are both critical factors in enzyme regulation. Glu59 discriminates human m-NAD-ME from mitochondrial NADP+-dependent malic enzyme and cytosolic NADP+-dependent malic enzyme in fumarate activation and malate cooperativity. Topics: Allosteric Regulation; Amino Acid Sequence; Amino Acid Substitution; Enzyme Activation; Fumarates; Humans; Kinetics; Malate Dehydrogenase; Malates; Mitochondrial Proteins; Models, Molecular; Molecular Sequence Data; Mutation; Protein Multimerization; Protein Subunits; Recombinant Proteins | 2009 |
Salmonella enterica serovar Typhimurium mutants unable to convert malate to pyruvate and oxaloacetate are avirulent and immunogenic in BALB/c mice.
Previously, we showed that the Salmonella enterica serovar Typhimurium SR-11 tricarboxylic acid (TCA) cycle must operate as a complete cycle for full virulence after oral infection of BALB/c mice (M. Tchawa Yimga, M. P. Leatham, J. H. Allen, D. C. Laux, T. Conway, and P. S. Cohen, Infect. Immun. 74:1130-1140, 2006). In the same study, we showed that for full virulence, malate must be converted to both oxaloacetate and pyruvate. Moreover, it was recently demonstrated that blocking conversion of succinyl-coenzyme A to succinate attenuates serovar Typhimurium SR-11 but does not make it avirulent; however, blocking conversion of succinate to fumarate renders it completely avirulent and protective against subsequent oral infection with the virulent serovar Typhimurium SR-11 wild-type strain (R. Mercado-Lubo, E. J. Gauger, M. P. Leatham, T. Conway, and P. S. Cohen, Infect. Immun. 76:1128-1134, 2008). Furthermore, the ability to convert succinate to fumarate appeared to be required only after serovar Typhimurium SR-11 became systemic. In the present study, evidence is presented that serovar Typhimurium SR-11 mutants that cannot convert fumarate to malate or that cannot convert malate to both oxaloacetate and pyruvate are also avirulent and protective in BALB/c mice. These results suggest that in BALB/c mice, the malate that is removed from the TCA cycle in serovar Typhimurium SR-11 for conversion to pyruvate must be replenished by succinate or one of its precursors, e.g., arginine or ornithine, which might be available in mouse phagocytes. Topics: Animals; Citric Acid Cycle; Culture Media; Female; Fumarates; Malates; Mice; Mice, Inbred BALB C; Mutation; Oxaloacetic Acid; Pyruvic Acid; Salmonella Infections; Salmonella typhimurium; Succinates; Virulence | 2009 |
Effects of the dicarboxylic acids malate and fumarate on E. coli O157:H7 and Salmonella enterica typhimurium populations in pure culture and in mixed ruminal microorganism fermentations.
The dicarboxylic acids malate and fumarate increase ruminal pH, reduce methane production, increase propionate and total volatile fatty acid (VFA) production, and reduce lactic acid accumulation in a manner similar to ionophores. These acids stimulate the ruminal bacterium Selenomonas ruminantium to ferment lactate to produce propionate. Thus, dicarboxylic acids have been suggested as nonantibiotic modifiers of the ruminal fermentation, but their impact on ruminal microbial ecology remains unknown. This study was designed to examine what effects these modifiers may have on intestinal pathogen populations such as Escherichia coli O157:H7 and S. enterica Typhimurium prior to their widespread incorporation into cattle rations. Pure cultures of E. coli O157:H7 strain 933 and S. enterica Typhimurium were grown with malate and fumarate added at 0, 1, 5, 10, and 20 mM (v/v; n = 3). Neither dicarboxylic acid inhibited (p > 0.1) the growth rate or final populations of E. coli O157:H7 or S. enterica Typhimurium. Ruminal fluid was collected from cattle (n = 2) and E. coli O157:H7 and S. enterica Typhimurium were added to separate ruminal fermentations incubated for 24 h at 39 degrees C. Fumarate and malate were added at concentrations of 0, 5, 10, and 20 mM (v/v; n = 2) and incubated for 24 h at 39 degrees C. Malate or fumarate addition did not affect (p > 0.1) populations of E. coli O157:H7 or S. enterica Typhimurium. However, the final pH was increased (p < 0.05), the acetate:propionate ratio was decreased (p < 0.05), and the total VFA production was increased (p < 0.05) by > or =10 mM dicarboxylic acid addition. These results confirm that dicarboxylic acids can modify ruminal fermentation, but they do not affect populations of critical foodborne pathogens. Topics: Animals; Body Fluids; Cattle; Colony Count, Microbial; Escherichia coli O157; Fermentation; Fumarates; Growth Inhibitors; Hydrogen-Ion Concentration; Malates; Rumen; Salmonella typhimurium | 2009 |
Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum.
Transporters of the dicarboxylate amino acid-cation symporter family often mediate uptake of C(4)-dicarboxylates, such as succinate or l-malate, in bacteria. A member of this family, dicarboxylate transporter A (DctA) from Corynebacterium glutamicum, was characterized to catalyze uptake of the C(4)-dicarboxylates succinate, fumarate, and l-malate, which was inhibited by oxaloacetate, 2-oxoglutarate, and glyoxylate. DctA activity was not affected by sodium availability but was dependent on the electrochemical proton potential. Efficient growth of C. glutamicum in minimal medium with succinate, fumarate, or l-malate as the sole carbon source required high dctA expression levels due either to a promoter-up mutation identified in a spontaneous mutant or to ectopic overexpression. Mutant analysis indicated that DctA and DccT, a C(4)-dicarboxylate divalent anion/sodium symporter-type transporter, are the only transporters for succinate, fumarate, and l-malate in C. glutamicum. Topics: Bacterial Proteins; Base Sequence; Corynebacterium glutamicum; Dicarboxylic Acid Transporters; Fumarates; Gene Deletion; Genetic Complementation Test; Malates; Molecular Sequence Data; Point Mutation; Succinic Acid | 2009 |
Effects of structural analogues of the substrate and allosteric regulator of the human mitochondrial NAD(P)+-dependent malic enzyme.
Fumarate, a four-carbon trans dicarboxylic acid, is the allosteric activator of the human mitochondrial NAD(P)(+)-dependent malic enzyme (m-NAD(P)-ME). In this paper, we discuss the effects of the structural analogues of fumarate on human m-NAD(P)-ME. Succinate, a dicarboxylic acid with a carbon-carbon single bond, can also activate the enzyme, but the activating effect of succinate is less than that of fumarate. Succinamide, a diamide of succinate, cannot activate the enzyme and is a poor active-site inhibitor. The cis isomer of fumarate, maleic acid, significantly inhibits the ME activity, suggesting that the trans configuration of fumarate is crucial for operating the allosteric regulation of the enzyme. Other dicarboxylic acids, including glutaconic acid, malonic acid and alpha-ketoglutarate, cannot activate the enzyme and inversely inhibit enzyme activity. Our data suggest that these structural analogues are mainly active-site inhibitors, although they may enter the allosteric site to inhibit the enzyme. Furthermore, these data also suggest that the dicarboxylic acid must be in a trans conformation for allosteric activation of the enzyme. Topics: Allosteric Regulation; Allosteric Site; Crystallography, X-Ray; Dicarboxylic Acids; Fumarates; Humans; Malate Dehydrogenase; Malates; Models, Molecular; Molecular Structure; Mutagenesis, Site-Directed; Protein Binding; Succinic Acid | 2009 |
Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors.
Dynamic nuclear polarization of (13)C-labeled cell substrates has been shown to massively increase their sensitivity to detection in NMR experiments. The sensitivity gain is sufficiently large that if these polarized molecules are injected intravenously, their spatial distribution and subsequent conversion into other cell metabolites can be imaged. We have used this method to image the conversion of fumarate to malate in a murine lymphoma tumor in vivo after i.v. injection of hyperpolarized [1,4-(13)C(2)]fumarate. In isolated lymphoma cells, the rate of labeled malate production was unaffected by coadministration of succinate, which competes with fumarate for transport into the cell. There was, however, a correlation with the percentage of cells that had lost plasma membrane integrity, suggesting that the production of labeled malate from fumarate is a sensitive marker of cellular necrosis. Twenty-four hours after treating implanted lymphoma tumors with etoposide, at which point there were significant levels of tumor cell necrosis, there was a 2.4-fold increase in hyperpolarized [1,4-(13)C(2)]malate production compared with the untreated tumors. Therefore, the formation of hyperpolarized (13)C-labeled malate from [1,4-(13)C(2)]fumarate appears to be a sensitive marker of tumor cell death in vivo and could be used to detect the early response of tumors to treatment. Given that fumarate is an endogenous molecule, this technique has the potential to be used clinically. Topics: Animals; Antineoplastic Agents, Phytogenic; Biomarkers, Tumor; Carbon Isotopes; Etoposide; Female; Fumarate Hydratase; Fumarates; Lymphoma; Malates; Mice; Mice, Inbred C57BL; Necrosis; Neoplasm Transplantation; Neoplasms; Nuclear Magnetic Resonance, Biomolecular; Tissue Extracts; Treatment Outcome | 2009 |
Identification of a gene encoding a transporter essential for utilization of C4 dicarboxylates in Corynebacterium glutamicum.
The Corynebacterium glutamicum R genome contains a total of eight genes encoding proteins with sequence similarity to C4-dicarboxylate transporters identified from other bacteria. Three of the genes encode proteins within the dicarboxylate/amino acid:cation symporter (DAACS) family, another three encode proteins within the tripartite ATP-independent periplasmic transporter family, and two encode proteins within the divalent anion:Na+ symporter (DASS) family. We observed that a mutant strain deficient in one of these genes, designated dcsT, of the DASS family did not aerobically grow on the C4 dicarboxylates succinate, fumarate, and malate as the sole carbon sources. Mutant strains deficient in each of the other seven genes grew as well as the wild-type strain under the same conditions, although one of these genes is a homologue of dctA of the DAACS family, involved in aerobic growth on C4 dicarboxylates in various bacteria. The utilization of C4 dicarboxylates was markedly enhanced by overexpression of the dcsT gene. We confirmed that the uptake of [13C]labeled succinate observed for the wild-type cells was hardly detected in the dcsT-deficient mutant but was markedly enhanced in a dcsT-overexpressing strain. These results suggested that in C. glutamicum, the uptake of C4 dicarboxylates for aerobic growth was mainly mediated by the DASS transporter encoded by dcsT. The expression level of the dcsT gene transiently increased in the early exponential phase during growth on nutrient-rich medium. This expression was enhanced by the addition of succinate in the mid-exponential phase and was repressed by the addition of glucose in the early exponential phase. Topics: Bacterial Proteins; Chromosomes, Bacterial; Corynebacterium glutamicum; Dicarboxylic Acid Transporters; DNA, Bacterial; Fumarates; Gene Expression Regulation, Bacterial; Genes, Bacterial; Glucose; Malates; Membrane Transport Proteins; Plasmids; Reverse Transcriptase Polymerase Chain Reaction; Succinic Acid | 2008 |
The effect of several organic acids on phytate phosphorus hydrolysis in broiler chicks.
Supplementation of some organic acids to a P-deficient diet has been shown to improve phytate P utilization. Two experiments were conducted from 0 to 16 d in battery brooders to determine the effect of various organic acids supplementation on phytate P utilization. In both experiments, birds were fed P-deficient corn and soybean meal-based diets. In experiment 1, citric acid, malic acid, fumaric acid, and EDTA were supplemented. Experiment 2 had a 2 x 2 factorial design with 2 sources of Met, 2-hydroxy-4-(methylthio) butanoic acid (HMB) and dl-Met, with or without 500 U/kg of phytase. In experiment 1, the addition of citric, malic, and fumaric acids increased percentage of bone ash, but only the effect of citric acid was significant. The addition of citric and malic acids also significantly increased the retention of P and phytate P (P<0.05). In experiment 2, the addition of phytase to the diet significantly increased 16-d BW gain, feed intake, percentage of bone ash, milligrams of bone ash, phytate P disappearance, and decreased the incidence of P-deficiency rickets. Methionine source did not affect 16-d BW gain, feed intake, feed efficiency, milligrams of bone ash, or P rickets incidence. However, the birds fed HMB had a higher percentage of bone ash and phytate P disappearance compared with the groups fed dl-Met only when phytase was added to the diets. The additions of citric acid and HMB improved phytate P utilization. However, the reason why some organic acids are effective whereas others are not is not apparent. Topics: 6-Phytase; Animal Nutritional Physiological Phenomena; Animals; Body Weight; Carboxylic Acids; Chelating Agents; Chickens; Citric Acid; Edetic Acid; Female; Fumarates; Malates; Male; Minerals; Phosphorus; Phytic Acid; Poultry Diseases; Random Allocation; Rickets | 2008 |
MmcBC in Pelotomaculum thermopropionicum represents a novel group of prokaryotic fumarases.
The overall amino-acid sequence of MmcBC in Pelotomaculum thermopropionicum was substantially homologous (33%) to fumarase A in Escherichia coli, although its possible subunit structure was different from known fumarases and it lacked the fumarate-lyase signature sequence. Here, MmcBC in E. coli is expressed and characterized. The purified enzyme catalyzed reversible conversion of fumarate to L-malate at an optimum temperature of 70 degrees C. Its molecular size was 64.2 kDa, indicating that it consisted of one MmcB and one MmcC. EPR spectra revealed that it had an oxygen-sensitive [4Fe-4S] cluster. We propose that MmcBC represents a novel group of prokaryotic fumarases. Topics: Amino Acid Sequence; Bacterial Proteins; Electron Spin Resonance Spectroscopy; Electrophoresis, Polyacrylamide Gel; Escherichia coli; Fumarate Hydratase; Fumarates; Kinetics; Malates; Molecular Sequence Data; Molecular Weight; Peptococcaceae; Phylogeny; Polymerase Chain Reaction; Recombinant Proteins; Sequence Homology, Amino Acid; Temperature | 2007 |
An improved method for the extraction of low molecular weight organic acids in variable charge soils.
Due to specific adsorption to variable charge soils, low molecular weight organic acids (LMWOAs) have not been sufficiently extracted, even if common extractants, such as water and 0.1 M sodium hydroxide (NaOH), were employed. In this work, the method for extracting LMWOAs in soils with 0.1 M NaOH was improved for variable charge soils; e.g. 1.0 M potassium fluoride (KF) with pH 4.0 was applied as an extractant jointed with 0.1 M NaOH based on its stronger ability to change the electrochemical properties of variable charge soils by specific adsorption. With the proposed method, the recoveries of oxalic, tartaric, malic, citric and fumaric acids were increased from 83 +/- 4, 93 +/- 1, 22 +/- 2, 63 +/- 5 and 84 +/- 3% to 98 +/- 2, 100 +/- 2, 85 +/- 2, 90 +/- 2 and 89 +/- 2%, respectively, compared with NaOH alone. Simultaneously, the LMWOAs in Agri-Udic Ferrosol with field moisture were measured with a satisfactory result. Topics: Acids; Citric Acid; Electrochemistry; Fluorides; Fumarates; Hydrogen-Ion Concentration; Lactic Acid; Malates; Molecular Weight; Organic Chemicals; Oxalic Acid; Potassium Compounds; Soil; Soil Pollutants; Tartrates; Time Factors | 2007 |
Alteration of organic acid metabolism in Arabidopsis overexpressing the maize C4 NADP-malic enzyme causes accelerated senescence during extended darkness.
The full-length cDNA encoding the maize (Zea mays) C(4) NADP-malic enzyme was expressed in Arabidopsis (Arabidopsis thaliana) under the control of the cauliflower mosaic virus 35S promoter. Homozygous transgenic plants (MEm) were isolated with activities ranging from 6- to 33-fold of those found in the wild type. The transformants did not show any differences in morphology and development when grown in long days; however, dark-induced senescence progressed more rapidly in MEm plants compared to the wild type. Interestingly, senescence could be retarded in the transgenic lines by exogenously supplying glucose, sucrose, or malate, suggesting that the lack of a readily mobilized carbon source is likely to be the initial factor leading to the premature induction of senescence in MEm plants. A comprehensive metabolic profiling on whole rosettes allowed determination of approximately 80 metabolites during a diurnal cycle as well as following dark-induced senescence and during metabolic complementation assays. MEm plants showed no differences in the accumulation and degradation of carbohydrates with respect to the wild type in all conditions tested, but accumulated lower levels of intermediates used as respiratory substrates, prominently malate and fumarate. The data indicated that extremely low levels of malate and fumarate are responsible for the accelerated dark-induced senescence encountered in MEm plants. Thus, in prolonged darkness these metabolites are consumed faster than in the wild type and, as a consequence, MEm plants enter irreversible senescence more rapidly. In addition, the data revealed that both malate and fumarate are important forms of fixed carbon that can be rapidly metabolized under stress conditions in Arabidopsis. Topics: Arabidopsis; Carbon; Chloroplasts; Darkness; Energy Metabolism; Fumarates; Gene Expression; Gene Expression Profiling; Malate Dehydrogenase; Malates; Plants, Genetically Modified; Zea mays | 2007 |
An allele of gyrA prevents Salmonella enterica serovar Typhimurium from using succinate as a carbon source.
A mutant gyrA allele resulting in an A271E substitution in the DNA gyrase protein generated a strain unable to grow on the C(4)-dicarboxylates succinate, malate, and fumarate. Bacteria harboring gyrA751 displayed decreased negative supercoiling in cells. Expression of the dctA gene, which encodes the C(4)-dicarboxylate transporter, was reduced in a gyrA751 mutant, providing the first evidence that dctA expression is supercoiling sensitive and uncovering a simple metabolic screen for lesions in gyrase that reduce negative supercoiling. Topics: Alleles; Amino Acid Substitution; Carbon; DNA Gyrase; DNA, Superhelical; Fumarates; Gene Expression; Malates; Membrane Transport Proteins; Mutation, Missense; Salmonella typhimurium; Succinic Acid | 2006 |
Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast.
Arabidopsis (Arabidopsis thaliana) mutants lacking the tonoplastic malate transporter AttDT (A. thaliana tonoplast dicarboxylate transporter) and wild-type plants showed no phenotypic differences when grown under standard conditions. To identify putative metabolic changes in AttDT knock-out plants, we provoked a metabolic scenario connected to an increased consumption of dicarboxylates. Acidification of leaf discs stimulated dicarboxylate consumption and led to extremely low levels of dicarboxylates in mutants. To investigate whether reduced dicarboxylate concentrations in mutant leaf cells and, hence, reduced capacity to produce OH(-) to overcome acidification might affect metabolism, we measured photosynthetic oxygen evolution under conditions where the cytosol is acidified. AttDT::tDNA protoplasts showed a much stronger inhibition of oxygen evolution at low pH values when compared to wild-type protoplasts. Apparently citrate, which is present in higher amounts in knock-out plants, is not able to replace dicarboxylates to overcome acidification. To raise more information on the cellular level, we performed localization studies of carboxylates. Although the total pool of carboxylates in mutant vacuoles was nearly unaltered, these organelles contained a lower proportion of malate and fumarate and a higher proportion of citrate when compared to wild-type vacuoles. These alterations concur with the observation that radioactively labeled malate and citrate are transported into Arabidopsis vacuoles by different carriers. In addition, wild-type vacuoles and corresponding organelles from AttDT::tDNA mutants exhibited similar malate channel activities. In conclusion, these results show that Arabidopsis vacuoles contain at least two transporters and a channel for dicarboxylates and citrate and that the activity of AttDT is critical for regulation of pH homeostasis. Topics: Arabidopsis; Arabidopsis Proteins; Biological Transport, Active; Citric Acid; Fumarates; Gene Expression Regulation, Plant; Homeostasis; Hydrogen-Ion Concentration; Malates; Membrane Potentials; Molecular Sequence Data; Mutation; Organic Anion Transporters; Oxygen Consumption; Photosynthesis; Plant Leaves; Vacuoles | 2005 |
Stimulation of Erwinia sp. fumarase and aspartase synthesis by changing medium components.
The optimal concentrations of nutrient medium components, aeration conditions, and pH providing for maximum biomass yields, as well as fumarase and L-aspartase activities, during submerged cultivation of Erwinia sp. were determined. The data showed that different concentrations of carbon source (molasses) and pH of the nutrient medium were required to reach the maximum fumarase and L-aspartase activities. Calculations performed by application of the additive lattice model suggested that the combination of these optimized factors would result in 3.2-, 3.4-, and 3.8-fold increases as compared to the experimental means in Erwinia sp. biomass, and L-aspartase and fumarase activities, respectively. The conditions of the fumaric acid biotransformations into L-malic and L-aspartic acids were optimized on the basis of intact Erwinia sp. cells, a fumarase and L-aspartase producer. In the cases of fumarate transformation into L-malic acid and of fumarate transformation into L-aspartic acids, fumarase and L-aspartase activities increased 1.5- and 1.7-fold, respectively. The experimental data were consistent with these estimates to 80% accuracy. In comparison with the additive lattice model, the application of polynomial nonlinear model allowed the between-factor relations to be considered and analyzed, which resulted in 1.1-, 1.27-, and 1.1-fold increases in Erwinia sp. biomass and fumarase and L-aspartase activities for the case of cultivation. In the case of fumarate transformation into L-malic acid, this model demonstrated a 1.7-fold increase in fumarase activity, whereas during fumarate transformation into L-aspartic acid no significant change in aspartase activity was observed. Topics: Algorithms; Aspartate Ammonia-Lyase; Aspartic Acid; Biomass; Culture Media; Erwinia; Fumarate Hydratase; Fumarates; Hydrogen-Ion Concentration; Industrial Microbiology; Malates; Models, Statistical; Polyvinyl Chloride | 2005 |
Functional characterization of a Na(+)-coupled dicarboxylate carrier protein from Staphylococcus aureus.
We have cloned and functionally characterized a Na(+)-coupled dicarboxylate transporter, SdcS, from Staphylococcus aureus. This carrier protein is a member of the divalent anion/Na(+) symporter (DASS) family and shares significant sequence homology with the mammalian Na(+)/dicarboxylate cotransporters NaDC-1 and NaDC-3. Analysis of SdcS function indicates transport properties consistent with those of its eukaryotic counterparts. Thus, SdcS facilitates the transport of the dicarboxylates fumarate, malate, and succinate across the cytoplasmic membrane in a Na(+)-dependent manner. Furthermore, kinetic work predicts an ordered reaction sequence with Na(+) (K(0.5) of 2.7 mM) binding before dicarboxylate (K(m) of 4.5 microM). Because this transporter and its mammalian homologs are functionally similar, we suggest that SdcS may serve as a useful model for DASS family structural analysis. Topics: Cations, Monovalent; Cloning, Molecular; Dicarboxylic Acid Transporters; Fumarates; Malates; Sodium; Staphylococcus aureus; Succinic Acid | 2005 |
Production of L-malic acid by permeabilized cells of commercial Saccharomyces sp. strains.
Of various yeasts tested in the conversion of fumaric to L-malic acid, Saccharomyces bayanus had the highest activity of fumarase. Cells permeabilized with 0.2% (w/v) CTAB for 5 min gave maximum enzyme activity. Under non-growth conditions, fumarase activity in the permeabilized cells was four times higher (271 U/g) than that of the intact cells (67 U/g). The proposed mathematical model for the batch production of L-malic acid was validated at different initial fumaric acid concentrations. The average conversion of fumaric acid was up to 82% and gave 21, 40, 83 and 175 mM L-malic acid from respectively, 25, 50, 100 and 210 mM: fumaric acid. Topics: Cell Membrane Permeability; Cetrimonium; Cetrimonium Compounds; Fumarate Hydratase; Fumarates; Kinetics; Malates; Saccharomyces; Saccharomyces cerevisiae; Species Specificity; Surface-Active Agents; Time Factors | 2005 |
Differentiation of hydatid cyst from cysticercus cyst by proton MR spectroscopy.
The metabolite patterns obtained by ex vivo proton MR spectroscopy of fluid from different locations of hydatid cysts of sheep and humans (n = 16) and cysticercus cysts of swine and humans (n = 25) were compared with an objective of differentiating the two parasites on the basis of their metabolite pattern. The spectra from hydatid fluid differed from cysticercus cyst by the absence of creatine in the former. When the hydatid cyst was fertile, malate and/or fumarate was also observed, which was absent in cysticercus cyst. The most likely explanation for the presence of creatine only in the cysticercus fluid is its active diffusion from the surrounding host tissue along with a contribution from the musculature present in the bladder wall of the cyst. Topics: Animals; Creatine; Cysticercosis; Diagnosis, Differential; Echinococcosis; Fumarates; Humans; Magnetic Resonance Spectroscopy; Malates; Protons; Sheep | 2002 |
Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria.
The rotenone-insensitive NADH dehydrogenase isolated from mitochondria of the procyclic form of Trypanosoma brucei has the ability to produce superoxide anions (Biochemistry 41 (2002) 3065). Superoxide production by the purified enzyme was 60% inhibited by diphenyl iodonium (DPI), stimulated significantly by ubiquinone analogues, and unaffected by metal ions. Production of reactive oxygen species (ROS) in intact cells was not affected by addition of rotenone with proline and malate as substrates; however, addition of rotenone inhibited 41% ROS production with succinate as substrate. These results suggest that complex I is not involved in production of ROS and that succinate-linked reversed electron transport occurs in trypanosome mitochondria. Superoxide formation in mitochondria with NADH as substrate was stimulated by antimycin A but was unaffected by myxothiazol plus stigmatellin, indicating that bc(1) complex is not a source of superoxide. DPI and fumarate inhibited by 68 and 36%, respectively, the rate of superoxide production with NADH as substrate. Addition of both fumarate and DPI blocked 70% superoxide production in mitochondria, a total inhibition similar to that observed with DPI addition alone. These results suggest that the rotenone-insensitive NADH dehydrogenase in addition to NADH fumarate reductase is a potential source of superoxide production in procyclic trypanosome mitochondria. Topics: Animals; Anti-Bacterial Agents; Antimycin A; Biphenyl Compounds; Fumarates; Malates; Methacrylates; Mitochondria; NAD; NADH Dehydrogenase; Onium Compounds; Polyenes; Proline; Rotenone; Substrate Specificity; Succinic Acid; Superoxides; Thiazoles; Trypanosoma brucei brucei; Ubiquinone; Uncoupling Agents | 2002 |
Organic acids influence iron uptake in the human epithelial cell line Caco-2.
It has previously been suggested that organic acids enhance iron absorption. We have studied the effect of nine organic acids on the absorption of Fe(II) and Fe(III) in the human epithelial cell line Caco-2. The effect obtained was dose-dependent, and the greatest increase (43-fold) was observed for tartaric acid (4 mmol/L) on Fe(III) (10 micromol/L). Tartaric, malic, succinic, and fumaric acids enhanced Fe(II) and Fe(III) uptake. Citric and oxalic acid, on the other hand, inhibited Fe(II) uptake but enhanced Fe(III) uptake. Propionic and acetic acid increased the Fe(II) uptake, but had no effect on Fe(III) uptake. Our results show a correlation between absorption pattern and chemical structure; e.g. hydroxyl groups, in addition to carboxyls, were connected with a positive influence. The results may be important for elucidating factors affecting iron bioavailability in the small intestine and for the development of foods with improved iron bioavailability. Topics: Absorption; Acetic Acid; Caco-2 Cells; Carboxylic Acids; Citric Acid; Ferric Compounds; Ferrous Compounds; Fumarates; Humans; Iron; Malates; Oxalic Acid; Propionates; Succinic Acid; Tartrates | 2002 |
Study of the organic acids composition of quince (Cydonia oblonga Miller) fruit and jam.
The organic acids present in several samples of quince fruit (pulp and peel) and quince jam (homemade and industrially manufactured) were analyzed by HPLC. The sample preparation was simple, involving only extraction with methanol (40 degrees C) and filtration through a Sep-pack C18 cartridge. The chromatographic separation was achieved using an ion exclusion column, Nucleogel Ion 300 OA (300 x 7.7 mm), in conjunction with a column heating device at 30 degrees C. An isocratic elution with H(2)SO(4) 0.01 N as the mobile phase, with a flow rate of 0.1 mL/min, and UV detection at 214 nm were used. These analyses showed that all samples presented a similar profile composed of at least six identified organic acids: citric, ascorbic, malic, quinic, shikimic, and fumaric acids. Several samples also contained oxalic acid. This study suggests that the organic acids levels and ratios may be useful for the determination of percent fruit content of quince jams. The citric acid value can also be used in the differentiation of the type of manufacture of the commercial quince jams (homemade or industrially manufactured). Topics: Ascorbic Acid; Carboxylic Acids; Chromatography, Gel; Chromatography, High Pressure Liquid; Citric Acid; Food Handling; Fruit; Fumarates; Malates; Methanol; Oxalic Acid; Quinic Acid; Rosaceae; Shikimic Acid | 2002 |
[Study on the optimal conditions in simultaneous reaction and separation for L-malic acid production].
Based on the principle of coupling reaction and separation process, free cells containing fumarase were used for producing L-malic acid. The calcium fumarate was used as substrate to produce calcium malate directly. This new method was more advantageous than the traditional immobilized cells conversion system in aspects such as simple equipment and operation, high conversion efficiency and the yield of product. The results showed that at reaction temperature 40 degrees C, pH7.0-7.5, reaction time 20-28 h, the conversion efficiency was up to 99.9% and about 3.2 kg calcium fumarate was converted to calcium malate per liter enzyme suspension. Also, L-malic acid produced in free fumarase system satisfied USP criterion, the residual fumaric acid was less than 0.1% and the cost was approximately to that of DL-malic acid produced by chemical synthesis. Topics: Biotransformation; Corynebacterium; Fumarate Hydratase; Fumarates; Hydrogen-Ion Concentration; Malates; Substrate Specificity; Temperature | 2001 |
Cerebral metabolism of lactate in vivo: evidence for neuronal pyruvate carboxylation.
The cerebral metabolism of lactate was investigated. Awake mice received [3-13C]lactate or [1-13C]glucose intravenously, and brain and blood extracts were analyzed by 13C nuclear magnetic resonance spectroscopy. The cerebral uptake and metabolism of [3-13C]lactate was 50% that of [1-13C]glucose. [3-13C]Lactate was almost exclusively metabolized by neurons and hardly at all by glia, as revealed by the 13C labeling of glutamate, gamma-aminobutyric acid and glutamine. Injection of [3-13C]lactate led to extensive formation of [2-13C]lactate, which was not seen with [1-13C]glucose, nor has it been seen in previous studies with [2-13C]acetate. This formation probably reflected reversible carboxylation of [3-13C]pyruvate to malate and equilibration with fumarate, because inhibition of succinate dehydrogenase with nitropropionic acid did not block it. Of the [3-13C]lactate that reached the brain, 20% underwent this reaction, which probably involved neuronal mitochondrial malic enzyme. The activities of mitochondrial malic enzyme, fumarase, and lactate dehydrogenase were high enough to account for the formation of [2-13C]lactate in neurons. Neuronal pyruvate carboxylation was confirmed by the higher specific activity of glutamate than of glutamine after intrastriatal injection of [1-14C]pyruvate into anesthetized mice. This procedure also demonstrated equilibration of malate, formed through pyruvate carboxylation, with fumarate. The demonstration of neuronal pyruvate carboxylation demands reconsideration of the metabolic interrelationship between neurons and glia. Topics: Animals; Blood Glucose; Brain; Carbon; Carbon Isotopes; Carbon Radioisotopes; Cell Communication; Cytosol; Eating; Fasting; Female; Fumarates; Glucose; Lactic Acid; Magnetic Resonance Spectroscopy; Malate Dehydrogenase; Malates; Mice; Mice, Inbred Strains; Mitochondria; Neuroglia; Neurons; Pyruvic Acid; Synaptosomes | 2000 |
Role of malonate in chickpeas.
Analysis of the content and distribution of organic acids in chickpea plants (Cicer arietinum L.) showed that malonate was the most abundant acid in roots and nodules, whereas malate was the main acid in leaves and stems. The highest concentration of malonate in roots was in the apices. Malonate metabolism did not appear to be directly related to abiotic stress. We suggest that malonate has a role as a defensive chemical in roots and nodules of chickpeas. Topics: Fabaceae; Fumarates; Malates; Malonates; Nitrogenase; Plant Roots; Plant Shoots; Plants, Medicinal; Succinates | 2000 |
Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury.
We have further examined the mechanisms for a severe mitochondrial energetic deficit, deenergization, and impaired respiration in complex I that develop in kidney proximal tubules during hypoxia-reoxygenation, and their prevention and reversal by supplementation with alpha-ketoglutarate (alpha-KG) + aspartate. The abnormalities preceded the mitochondrial permeability transition and cytochrome c loss. Anaerobic metabolism of alpha-KG + aspartate generated ATP and maintained mitochondrial membrane potential. Other citric-acid cycle intermediates that can promote anaerobic metabolism (malate and fumarate) were also effective singly or in combination with alpha-KG. Succinate, the end product of these anaerobic pathways that can bypass complex I, was not protective when provided only during hypoxia. However, during reoxygenation, succinate also rescued the tubules, and its benefit, like that of alpha-KG + malate, persisted after the extra substrate was withdrawn. Thus proximal tubules can be salvaged from hypoxia-reoxygenation mitochondrial injury by both anaerobic metabolism of citric-acid cycle intermediates and aerobic metabolism of succinate. These results bear on the understanding of a fundamental mode of mitochondrial dysfunction during tubule injury and on strategies to prevent and reverse it. Topics: Adenosine Triphosphate; Aerobiosis; Anaerobiosis; Animals; Aspartic Acid; Benzimidazoles; Carbocyanines; Cell Hypoxia; Citric Acid Cycle; Energy Metabolism; Female; Fluorescent Dyes; Fumarates; Ketoglutaric Acids; Kidney Tubules, Proximal; Malates; Membrane Potentials; Mitochondria; Oxygen; Rabbits; Rhodamines; Substrate Specificity | 2000 |
Quinone analogue irrecoverably paralyses the filarial parasites in vitro.
2,3-Dimethoxy-5-methyl-1,4-benzoquinone (Q0), an analogue of ubiquinone, irreversibly paralyses the adult and microfilariae of the cattle filarial parasite Setaria digitata. The same concentration of Q0 that paralyses the microfilariae of S. digitata also paralyses the microfilariae of the human filarial parasite Wuchereria bancrofti within the same duration. Thus the experiments done in the model S. digitata system can well be extended to the human filarial system. A drug at the level of the quinone-centered energy generating system, perhaps an analogue of quinone like Q0, can inactivate the filarial parasites and may prove to be an effective drug to control filariasis. Topics: Animals; Benzoquinones; Cattle; Disease Models, Animal; Dose-Response Relationship, Drug; Electron Transport; Filariasis; Fumarates; Glucose; Humans; Malates; Movement; NAD; Setaria Nematode; Setariasis; Sodium Lactate; Time Factors; Wuchereria bancrofti | 1999 |
Adsorption of small hydroxy acids on glass: a pitfall in quantitative urinary organic acid analysis by GC-MS.
Topics: 3-Hydroxybutyric Acid; Adsorption; Caprylates; Dicarboxylic Acids; Fumarates; Gas Chromatography-Mass Spectrometry; Glass; Glycolates; Humans; Hydroxy Acids; Lactic Acid; Malates; Malonates; Phenylbutyrates; Polytetrafluoroethylene; Valerates | 1999 |
Is beta-poly(L-malate) synthesis catalysed by a combination of beta-L-malyl-AMP-ligase and beta-poly(L-malate) polymerase?
beta-Poly(L-malate) is supposed to function in the storage and transport of histones, DNA polymerases and other nuclear proteins in the giant syncytical cells (plasmodia) of myxomycetes. Here we report on the biosynthesis of [14C]beta-poly(L-malate) from injected L-[14C]malate in the plasmodium of Physarum polycephalum. The effects of KCN, arsenate, adenosine 5'-(alpha, beta-methylene)triphosphate, adenosine 5'-(beta, gamma-methylene)triphosphate, guanosine 5'-(beta, gamma-methylene)triphosphate, desulfo coenzyme A and phenylarsinoxid on beta-poly(L-malate) synthesis were studied after their coinjection with L-[14C]malate. The synthesis was not affected by KCN or desulfo coenzyme A, but was blocked by arsenate and adenosine 5'-(alpha,beta-methylene)triphosphate. The plasmodium lysate catalysed an L-malate-dependent ATP-[32P]pyrophosphate exchange, but was devoid of beta-poly(L-malate) synthetic activity under all experimental conditions tested. The results suggested an extramitochondrial synthesis of beta-poly(L-malate), involving the polymerization of beta-L-malyl-AMP. It is assumed that the lack of synthesis in the lysate is caused by the inactivation of beta-poly(L-malate) polymerase involving a cell injury kinase pathway. Because injected guanosine 5'-(beta, gamma-methylene)triphosphate blocks the synthesis, the injury signal is likely to be GTP dependent. Topics: Acyltransferases; Adenosine Triphosphate; Animals; Aspartic Acid; Citric Acid; Energy Metabolism; Fumarates; Ligases; Malates; Microinjections; Physarum polycephalum; Polymers | 1999 |
Fumarate metabolism and the microaerophily of Campylobacter species.
(1) The role of fumarate metabolism in the microaerophily of the Campylobacter genus and the effects of therapeutic agents against it were investigated. (2) NMR spectroscopy was employed to determine the properties of Campylobacter fumarase (Fum) and fumarate reductase (Frd). Radiotracer analysis was used to determine the production of carbon dioxide by Campylobacter cells. Standard microbiological techniques were used to measure the effects of environmental conditions and inhibitors on bacterial growth. (3) All Campylobacter species tested showed both Fum and Frd activities. Frd activity was observed with or without the addition of an exogenous electron donor in the particulate fractions obtained from lysates. Fumarate was oxidized to carbon dioxide via the acetyl-CoA cleavage pathway. The genes encoding proteins involved in fumarate metabolism were identified in the Campylobacter jejuni genome. Cells grew better in atmospheres with 5 and 10% oxygen levels. Fum activity was the same in cultures grown under different oxygen tensions and did not vary with the age of cultures. Frd activity was higher in cultures which grew at faster rates and decreased with the age of cultures. Four Frd inhibitors showed bactericidal effects against Campylobacter spp. with different potencies. The relative strengths of inhibition of the compounds followed the same order as the bactericidal effects. (4) The results suggested that Frd and Fum are constitutive and play a fundamental role in these microaerophiles which show characteristics of anaerobic metabolism, and that the Frd inhibitors tested would not be of therapeutic use. Topics: Animals; Anthelmintics; Campylobacter; Fumarates; Hydrogen-Ion Concentration; Levamisole; Malates; Morantel; Pyrantel; Thiabendazole | 1999 |
Metabolite transport in isolated yeast mitochondria: fumarate/malate and succinate/malate antiports.
In this study, we investigated the metabolite permeability of isolated coupled Saccharomyces cerevisiae mitochondria. The occurrence of a fumarate/malate antiporter activity was shown. The activity differs from that of the dicarboxylate carrier (which catalyses the succinate/malate antiport) in (a) kinetics (Km and Vmax values are about 27 microM and 22 nmol min(-1) mg protein(-1) and 70 microM and 4 nmol min(-1) mg protein(-1), respectively), (b) sensitivity to inhibitors, (c) Ki for the competitive inhibitor phenylsuccinate and (d) pH profiles. Topics: Adenosine Diphosphate; Adenosine Triphosphate; Antiporters; Biological Transport, Active; Fumarates; Hydrogen-Ion Concentration; Kinetics; Malates; Mitochondria; Saccharomyces cerevisiae; Succinates | 1999 |
Simultaneous determination of oxalic, fumaric, maleic and succinic acids in tartaric and malic acids for pharmaceutical use by ion-suppression reversed-phase high performance liquid chromatography.
A reliable method for the simultaneous determination of oxalic, fumaric, maleic, and succinic acids in tartaric and malic acids for pharmaceutical use by reversed-phase ion-suppression high performance liquid chromatography is presented. HPLC was achieved on a Nova-Pak C18 column by isocratic elution using water adjusted to pH 2.10-2.15 with perchloric acid, and detection was by UV adsorption at a wavelength of 210 nm. This method was found to be superior to previous liquid chromatography as well as other classical assay, and to be an attractive choice for the analysis of these compounds. Topics: Chromatography, High Pressure Liquid; Dicarboxylic Acids; Drug Contamination; Evaluation Studies as Topic; Fumarates; Hydrogen-Ion Concentration; Malates; Maleates; Oxalic Acid; Perchlorates; Reproducibility of Results; Succinic Acid; Tartrates | 1999 |
Fumarate permeation in normal and acidotic rat kidney mitochondria: fumarate/malate and fumarate/aspartate translocators.
In order to gain some insight into the fate of fumarate synthesised in the cytosol in the purine nucleotide cycle and in amino acid catabolism, the capability of both rat kidney mitochondria and acidotic rat kidney mitochondria to take up either externally synthesised, via adenylsuccinate lyase, or added fumarate in exchange with intramitochondrial malate or aspartate was tested by means of both spectrophotometric and isotopic techniques. The appearance of either malate or aspartate caused by the presence of fumarate was revealed outside normal and acidotic mitochondria by using specific substrate detecting systems. Consistently, externally added fumarate was found to cause efflux of either [14C]-malate or [14C]-aspartate from loaded mitochondria. The occurrence in rat kidney mitochondria of two separate translocators, i.e., fumarate/malate and fumarate/aspartate carriers, is shown in the light of saturation kinetics and the different inhibitor sensitivity. The fumarate/aspartate antiporters found in normal and acidotic mitochondria appear to differ from each other. Topics: Acidosis; Adenylosuccinate Lyase; Animals; Aspartic Acid; Biological Transport; Carrier Proteins; Fumarates; Kidney; Malates; Male; Mitochondria; NAD; NADP; Oxaloacetates; Rats; Rats, Wistar | 1998 |
The ms2io6A37 modification of tRNA in Salmonella typhimurium regulates growth on citric acid cycle intermediates.
The modified nucleoside 2-methylthio-N-6-isopentenyl adenosine (ms2i6A) is present in position 37 (adjacent to and 3' of the anticodon) of tRNAs that read codons beginning with U except tRNA(i.v. Ser) in Escherichia coli. In Salmonella typhimurium, 2-methylthio-N-6-(cis-hydroxy)isopentenyl adenosine (ms2io6A; also referred to as 2-methylthio cis-ribozeatin) is found in tRNA, most likely in the species that have ms2i6A in E. coli. Mutants (miaE) of S. typhimurium in which ms2i6A hydroxylation is blocked are unable to grow aerobically on the dicarboxylic acids of the citric acid cycle. Such mutants have normal uptake of dicarboxylic acids and functional enzymes of the citric acid cycle and the aerobic respiratory chain. The ability of S. typhimurium to grow on succinate, fumarate, and malate is dependent on the state of modification in position 37 of those tRNAs normally having ms2io6A37 and is not due to a second cellular function of tRNA (ms2io6A37)hydroxylase, the miaE gene product. We suggest that S. typhimurium senses the hydroxylation status of the isopentenyl group of the tRNA and will grow on succinate, fumarate, or malate only if the isopentenyl group is hydroxylated. Topics: Chromosome Mapping; Citric Acid Cycle; Fumarates; Genes, Bacterial; Genetic Complementation Test; Isopentenyladenosine; Malates; Mutation; Phenotype; RNA, Transfer; Salmonella typhimurium; Succinic Acid | 1998 |
Production of L-malic acid via biocatalysis employing wild-type and respiratory-deficient yeasts.
The yeast Saccharomyces cerevisiae has been used to efficiently produce L-malic acid from fumaric acid. Fumarase is responsible for the reversible conversion of fumaric and L-malic acids in the TCA cycle. To investigate the function of mitochondrial and cytoplasmic fumarase isoenzymes in L-malic acid bioconversion, a wild-type strain and a cytoplasmic respiratory-deficient mutant devoid of functional mitochondria were employed. The mutant strain, which only contained the cytoplasmic fumarase, was still functional in fumaric acid to L-malic acid bioconversion However, its specific conversion rate was much lower (0.20 g/g.h) than that of the wild-type strain (0.55 g/g.h). Topics: Catalysis; Coloring Agents; Cytoplasm; Fermentation; Fumarate Hydratase; Fumarates; Malates; Mitochondria; Oxygen Consumption; Saccharomyces cerevisiae; Stereoisomerism; Tetrazolium Salts | 1998 |
Bioconversion of fumaric acid to succinic acid by recombinant E. coli.
Succinic acid was produced efficiently from fumaric acid by a recombinant E. coli strain DH5 alpha/pGC1002 containing multicopy fumarate reductase genes. The effects of initial fumaric acid and glucose concentration on the production of succinic acid were investigated. Succinic acid reached 41 to over 60 g/L in 48.5 h starting with 50 to 64 g/L fumaric acid. Significant substrate inhibition was observed at initial fumaric acid concentration of 90 g/L. L-Malic acid became the major fermentation product under these conditions. Provision of glucose (5-30 g/L) to the fermentation medium stimulated the initial succinic acid production rate over two folds. Topics: Acetic Acid; Escherichia coli; Fermentation; Fumarates; Glucose; Malates; Succinate Dehydrogenase; Succinic Acid | 1998 |
Pig heart fumarase contains two distinct substrate-binding sites differing in affinity.
A eukaryotic fumarase is for the first time unequivocally shown to contain two distinct substrate-binding sites. Pig heart fumarase is a tetrameric enzyme consisting of four identical subunits of 50 kDa each. Besides the true substrates L-malate and fumarate, the active sites (sites A) also bind their analogs D-malate and oxaloacetate, as well as the competitive inhibitor glycine. The additional binding sites (sites B) on the other hand also bind the substrates and their analogs D-malate and oxaloacetate, as well as L-aspartate which is not an inhibitor. Depending on the pH, the affinity of sites B for ligands (Kd being in the millimolar range) is 1-2 orders of magnitude lower than the affinity of sites A (of which Kd is in the micromolar range). However, saturating sites B results in an increase in the overall activity of the enzyme. The benzenetetracarboxyl compound pyromellitic acid displays very special properties. One molecule of this ligand is indeed able to bind into a site A and a site B at the same time. Four molecules of pyromellitic acid were found to bind per molecule fumarase, and the affinity of the enzyme for this ligand is very high (Kd = 0.6 to 2.2 microM, depending on the pH). Experiments with this ligand turned out to be crucial in order to explain the results obtained. An essential tyrosine residue is found to be located in site A, whereas an essential methionine residue resides in or near site B. Upon limited proteolysis, a peptide of about 4 kDa is initially removed, probably at the C-terminal side; this degradation results in inactivation of the enzyme. Small local conformational changes in the enzyme are picked up by circular dichroism measurements in the near-UV region. This spectrum is built up of two tryptophanyl triplets, the first one of which is modified upon saturating the active sites (A), and the second one upon saturating the low affinity binding sites (B). Topics: Animals; Catalytic Domain; Circular Dichroism; Fumarate Hydratase; Fumarates; Kinetics; Ligands; Macromolecular Substances; Malates; Models, Molecular; Molecular Weight; Myocardium; Protein Denaturation; Spectrophotometry; Swine; Urea | 1998 |
Profound neurological phenotype in a patient presenting with disordered isoleucine and energy metabolism.
Topics: Acetyl-CoA C-Acyltransferase; Amino Acid Metabolism, Inborn Errors; Cells, Cultured; Dicarboxylic Acids; Energy Metabolism; Fibroblasts; Fumarates; Humans; Infant; Isoleucine; Malates; Male; Neurodegenerative Diseases; Phenotype; Succinic Acid | 1998 |
Metabolism of the dimethyl ester of [2,3-(13)C]succinic acid in rat hepatocytes.
Hepatocytes prepared from overnight fasted rats were incubated for 120 min in the presence of the dimethyl ester of [2,3-(13)C]succinic acid (10 mM). The identification and quantification of 13C-enriched metabolites in the incubation medium were performed by a novel computational strategy for the deconvolution of NMR spectra with multiplet structures and constraints. The generation of 13C-labelled metabolites, including succinate, fumarate, malate, lactate, alanine, aspartate and glucose accounted for about half of the initial amount of the ester present in the incubation medium. A fair correlation was observed between the experimental abundance of each 13C-labelled glucose isotopomer and the corresponding values derived from a model for the metabolism of [2,3-(13)C]succinate. Newly formed glucose was more efficiently labelled in the carbon C5 than C2, as well as the carbon C6 than C1, supporting the concept that D-glyceraldehyde-3-phosphate may undergo enzyme-to-enzyme channelling between glyceraldehyde-3-phosphate dehydrogenase and phosphofructoaldolase. Topics: Alanine; Animals; Esters; Female; Fumarates; In Vitro Techniques; Lactic Acid; Liver; Magnetic Resonance Spectroscopy; Malates; Models, Chemical; Rats; Rats, Wistar; Succinates; Succinic Acid | 1998 |
How fumarase recycles after the malate --> fumarate reaction. Insights into the reaction mechanism.
Recycling of yeast fumarase to permit repetition of its reaction chemistry requires two proton transfers and two conformational changes, in pathways that are different in detail but thematically similar in the two directions. In the malate --> fumarate direction, simple anions such as acetate accelerate the fumarate-off step producing E(H(f)), a fumarate-specific isoform that retains the C3R-proton of malate. Fumarate specificity is shown with S-2,3-dicarboxyaziridine, which is competitive vs fumarate and noncompetitive with malate as substrate. The steady-state level of E(H(f)), based on Kii (S-2,3-dicarboxyaziridine), is increased by D2O and decreased by imidazole acting as a general acid for conversion of E(H(f)) to E(H(f))H. E(H(f))H is fumarate-specific as shown by the inhibition pattern with ClO4-. The pKa of this step is approximately 7.25 based on the pH dependence of Kii (ClO4-). A conformational change occurs next as shown by high sensitivity of k(cat) but not k(cat)/Km, to the microviscosogen, glycerol, and change to a nonspecific isoform, E(H(mf))H, probably the same species formed in the fumarate --> malate direction from malate-specific intermediates by a different conformational change. Malate enters the cycle by reaction with E(H(mf))H and returns to E(m)H x malate after a second conformational change. When fumarate-off is slow, as in low anion medium, malate itself becomes an activator of malate --> fumarate. This effect occurs with changes in inhibition patterns suggestive of the bypass of the slow E(f) --> E(mf) conversion in favor of direct formation of E(mf) when free fumarate is formed. 3-Nitro-2-hydroxypropionate, a strong inhibitor of fumarase [Porter, D. J. T., and Bright, H. J. (1980) J. Biol. Chem. 255, 4772-4780] in its carbanion form, is competitive with both malate and fumarate. Therefore, 3-nitro-2-hydroxypropionic acid interacts with E(H(mf))H and not with E(m) or E(f) isoforms. Occurrence of two different conformational changes in the recycling process suggests that the reaction chemistry employs a two-step mechanism. The specificity of inhibition for E(H(mf))H is consistent with the expected intermediate of a carbanion mechanism, E(H)H x carbanion-. The proton transfers and conformational changes of recycling occur in the same sequence that is expected for this reaction chemistry. Several examples of ligand-activated conformational changes are reported. Topics: Animals; Anions; Binding, Competitive; Citric Acid Cycle; Enzyme Activation; Fumarate Hydratase; Fumarates; Isoenzymes; Lactates; Malates; Protein Conformation; Saccharomyces cerevisiae; Substrate Specificity; Swine | 1998 |
Metabolite changes associated with heat shocked avian fibroblast mitochondria.
A previous report from our laboratory (Collier et al 1993) showed that the elongated tubules of mitochondria in the cytoplasm of cultured chicken embryo fibroblasts collapsed to irregularly shaped structures surrounding the nuclear membrane after a 1 h heat shock treatment. The normal mitochondrial morphology reappeared upon removal of the thermal stress. We have now determined that several changes occurred in mitochondrial-related metabolites under these same heat shock and recovery conditions. Among these were significant decreases in the levels of fumarate and malate and increases in the amounts of aspartate and glutamate. In contrast, other intermediates of the tri-carboxylic acid cycle were unaltered as were levels of ATP and phosphocreatine. The changes observed might result from heat shock-induced changes in enzyme activities of the mitochondria, from alterations in the membrane-embedded specialized carrier proteins that transport metabolites between cytosol and mitochondria or from a disorganization of the electron-transport system normally coupled to oxidative metabolism. The rapid recovery, however, suggested that these changes were transient and readily reversible. Topics: Adenosine Triphosphate; Animals; Aspartic Acid; Cells, Cultured; Chick Embryo; Citric Acid; Energy Metabolism; Fibroblasts; Fumarates; Glutamic Acid; Glycerophosphates; Glycolysis; Hot Temperature; Ketoglutaric Acids; Malates; Mitochondria; Phosphocreatine; Pyruvates; Stress, Physiological | 1997 |
Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae.
Saccharomyces cerevisiae accumulates L-malic acid through a cytosolic pathway starting from pyruvic acid and involving the enzymes pyruvate carboxylase and malate dehydrogenase. In the present study, the role of malate dehydrogenase in the cytosolic pathway was studied. Overexpression of cytosolic malate dehydrogenase (MDH2) under either the strong inducible GAL10 or the constitutive PGK promoter causes a 6- to 16-fold increase in cytosolic MDH activity in growth and production media and up to 3.7-fold increase in L-malic acid accumulation in the production medium. The high apparent Km of MDH2 for L-malic acid (11.8 mM) indicates a low affinity of the enzyme for this acid, which is consistent with the cytosolic function in the enzyme and differs from the previously published Km of the mitochondrial enzyme (MDH1, 0.28 mM). Under conditions of MDH2 overexpression, pyruvate carboxylase appears to be a limiting factor, thus providing a system for further metabolic engineering of L-malic acid production. The overexpression of MDH2 activity also causes an evaluation in the accumulation of fumaric acid and citric acid. Accumulation of fumaric acid is presumably caused by high intracellular L-malic acid concentrations and the activity of the cytosolic fumarase. The accumulation of citric acid may suggest the intriguing possibility that cytosolic L-malic acid is a direct precursor of citric acid in yeast. Topics: Citric Acid; Cytosol; Fumarates; Kinetics; Malate Dehydrogenase; Malates; Saccharomyces cerevisiae | 1997 |
Restructuring the active site of fumarase for the fumarate to malate reaction.
Changes in the active site of fumarase (yeast fumarase II) that occur when fumarate is converted to malate (E.F --> E.M) must be reversed for another cycle of reaction to take place. As shown here, recycling of the enzyme includes two proton transfers and one conformational change. These events, together with the M-off step, are variously rate-determining depending on the medium. In very low salt the release of M is limited by the conformational change. Thus, (V/Km)F decreases with increased viscosity, shown with glycerol. A variety of simple anions, such as Cl- at approximately 50 mM and F itself at low concentration, activate the dissociation of M. This nonspecific anion effect is the basis for the >4-fold apparent cooperative activation by substrate. The M-off step and the conformational change are independent and random-order events. Thus, even when M-off is made rapid the rate of recycling is inhibited by glycerol, which in 100 mM NaCl inhibits Vmax but not V/Km. The enzyme form that results when M is released is M-specific, Em. Thus mesotartarate, competitive toward M, is noncompetitive toward F. The slow conformational change required for recycling of Em is activated by Pi and chaotropic anions such as azide and thiocyanate, giving rise to a nonspecific intermediate, Emf (mesotartarate becomes competitive toward F and Britton's countertransport property disappears with these activators). Evidence is presented for the locations and rates of the two proton transfer steps required to complete the cycle. Topics: Anions; Binding Sites; Buffers; Enzyme Activation; Fumarate Hydratase; Fumarates; Hydrogen-Ion Concentration; Kinetics; Malates; Organophosphonates; Phosphates; Sodium Chloride; Tartrates | 1997 |
Gas chromatographic determination of organic acids from fruit juices by combined resin mediated methylation and extraction in supercritical carbon dioxide.
A procedure in which anionic analytes, trapped on ion exchange resin, are simultaneously methylated and released using methyl iodide in either supercritical carbon dioxide or acetonitrile has been extended to polyfunctional organic acids. The combined SFE methylation of fruit juice acids trapped onto ion exchange resin proceeds in good yield producing the methyl esters of fumaric, succinic, malic, tartaric, isocitric and citric acids which are readily separated by GC. Using this procedure low concentrations of one acid can be detected and quantitated in the presence of very high concentrations of another. This new method detects tartaric acid at levels of 10 ppm in juices containing 10,000 ppm citric acid. Quantitation was performed either by using GC-FID with triethyl citrate or diethyl tartrate as internal standards or with the element specific calibration capability of the GC-AED. A simple new technique for the determination of citric/isocitric acid ratio is now available. Also, in contrast to HPLC methods, the identity of an analyte is readily confirmed by GC-MS. Topics: Beverages; Citric Acid; Fruit; Fumarates; Gas Chromatography-Mass Spectrometry; Hydrogen-Ion Concentration; Isocitrates; Malates; Methylation; Succinic Acid; Tartrates | 1997 |
Purification and characterization of fumarase from the syntrophic propionate-oxidizing bacterium strain MPOB.
Fumarase from the syntrophic propionate-oxidizing bacterium strain MPOB was purified 130-fold under anoxic conditions. The native enzyme had an apparent molecular mass of 114 kDa and was composed of two subunits of 60 kDa. The enzyme exhibited maximum activity at pH 8.5 and approximately 54 degrees C. The Km values for fumarate and L-malate were 0.25 mM and 2.38 mM, respectively. Fumarase was inactivated by oxygen, but the activity could be restored by addition of Fe2+ and β-mercaptoethanol under anoxic conditions. EPR spectroscopy of the purified enzyme revealed the presence of a [3Fe-4S] cluster. Under reducing conditions, only a trace amount of a [4Fe-4S] cluster was detected. Addition of fumarate resulted in a significant increase of this [4Fe-4S] signal. The N-terminal amino acid sequence showed similarity to the sequences of fumarase A and B of Escherichia coli (56%) and fumarase A of Salmonella typhimurium (63%). Topics: Amino Acid Sequence; Anaerobiosis; Bacteria, Anaerobic; Electron Spin Resonance Spectroscopy; Escherichia coli; Fumarate Hydratase; Fumarates; Hydrogen-Ion Concentration; Kinetics; Malates; Molecular Sequence Data; Molecular Weight; Oxidation-Reduction; Oxygen; Propionates; Salmonella typhimurium; Temperature | 1996 |
Effect of extracellular hydrogen on organic acid utilization by the ruminal bacterium Selenomonas ruminantium.
The objective of this study was to evaluate the effect of extracellular H2 on organic acid utilization by two lactate-utilizing strains of Selenomonas ruminantium (HD4, H18). Both strains were able to grow (optical density at 600 nm > or = after 9 h) on either aspartate, fumarate, or malate in the presence of 1 atmosphere (atm) of H2. Succinate was the major end product produced in these fermentations. When cells were incubated with lactate plus 1 atm H2, growth was minimal little lactate was fermented. The electron transport inhibitor, acriflavine, was strong inhibitor of growth when either strain was incubated in the presence of organic acid plus H2. Compared with glucose- or lactate-grown cells, cellular carbohydrate levels were lower for both strains in cells grown on either organic acid plus H2. These results suggest that electron transport plays a role in organic acid utilization by S. ruminantium. Topics: Animals; Aspartic Acid; Culture Media; Fermentation; Fumarates; Gram-Negative Bacteria; Growth Inhibitors; Hydrogen; Lactates; Lactic Acid; Malates; Rumen | 1996 |
The specificity of fumarate as a switching factor of the bacterial flagellar motor.
Fumarate restores to flagella of cytoplasm-free, Che Y-containing envelopes of Escherichia coli and Salmonella typhimurium the ability to switch from one direction of rotation to another. To examine the specificity of this effect, we studied flagellar rotation of envelopes which contained, instead of fumarate, one of its analogues. Malate, maleate and succinate promoted switching, but to a lesser extent than fumarate. These observations were made both with wild-type envelopes and with envelopes of a mutant which lacks the enzymes succinate dehydrogenase and fumarase, indicating that the switching-promoting activity of the analogues was not caused by their conversion to fumarate. Aspartate and lactate did not promote switching. Using strains defective in specific enzymes of the tricarboxylic acid cycle and lacking the cytoplasmic chemotaxis proteins as well as some of the chemotaxis receptors, we demonstrated that, in intact bacteria, unlike the situation in envelopes, fumarate promoted clockwise rotation via its metabolites acetyl phosphate and acetyladenylate, but did not promote switching (presumably because of the presence of cytoplasmic fumarate). All of the results are consistent with the notion that fumarate acts as a switching factor, presumably by lowering the activation energy of switching. Thus fumarate and some of its metabolites may serve as a connection point between the bacterial metabolic state and chemotactic behaviour. Topics: Aspartic Acid; Bacterial Proteins; Chemotaxis; Escherichia coli; Flagella; Fumarates; Lactic Acid; Malates; Maleates; Membrane Proteins; Methyl-Accepting Chemotaxis Proteins; Rotation; Salmonella typhimurium; Succinates; Succinic Acid | 1996 |
Different regulatory properties of the cytosolic and mitochondrial forms of malic enzyme isolated from human brain.
The human brain contains a cytosolic and mitochondrial form of NADP(+)-dependent malic enzyme. To investigate their possible metabolic roles we compared the regulatory properties of these two iso-enzymes. The mitochondrial malic enzyme exhibited a sigmoid substrate saturation curve at low malate concentration which was shifted to the right at both higher pH values and in the presence of low concentration of Mn2+ or Mg2+. Succinate or fumarate increased the activity of the mitochondrial malic enzyme at low malate concentration. Both activators shifted the plot of reaction velocity versus malate concentration to the left, and removed sigmoidicity, but the maximum velocity was unaffected. The activation was associated with a decrease in Hill coefficient from 2.3 to 1.1. The human brain cytosolic malic enzyme displayed a hyperbolic substrate saturation kinetics and no sigmoidicity was detected even at high pH and low malate concentrations. Succinate or fumarate exerted no effect on the enzyme activity. Excess of malate inhibited the oxidative decarboxylation catalysed by cytosolic enzyme at pH 7.0 and below. In contrast, decarboxylation catalysed by mitochondrial malic enzyme, was unaffected by the substrate. These results suggest that under in vivo conditions, cytosolic malic enzyme catalyses both oxidative decarboxylation of malate and reductive carboxylation of pyruvate, whereas the role of mitochondrial enzyme is limited to decarboxylation of malate. One may speculate that in vivo the reaction catalysed by cytosolic malic enzyme supplies dicarboxylic acids (anaplerotic function) for the formation of neurotransmitters, while the mitochondrial enzyme regulates the flux rate via Krebs cycle by disposition of the tricarboxylic acid cycle intermediates (cataplerotic function). Topics: Brain; Cytoplasm; Fumarates; Humans; Hydrogen-Ion Concentration; Magnesium Chloride; Malate Dehydrogenase; Malates; Mitochondria; NADP; Succinates; Succinic Acid | 1995 |
Kinetics of enzymes with iso-mechanisms: dead-end inhibition of fumarase and carbonic anhydrase II.
Isomerization of free enzyme can be detected in kinetic patterns of dead-end inhibition because competitive substrate analogs yield noncompetitive inhibition versus product in reverse reaction kinetics. The ratio of slope and intercept inhibition constants allows a quantitative estimation of the relative kinetic significance of the isomerization to a catalytic turnover. Applying this kinetic analysis theoretically to inhibition data for bovine carbonic anhydrase II by anions [Y. Pocker and T. L. Deits (1982) J. Am. Chem. Soc. 104, 2424] provides an estimate of 43 +/- 13% for how rate-limiting the isomerization segment is at pH 6.6. Applying the analysis experimentally to porcine heart fumarase provides a competitive pattern of inhibition by trans-aconitate versus fumarate with Ki(s) = 2.0 +/- 0.5 mM, together with a non-competitive pattern versus malate, with Ki(s) = 0.8 +/- 0.1 mM and Kii = 2.3 +/- 0.4 mM. Assuming that the isomerization segment of fumarase is the reprotonation of an active site carboxyl and imidazole with pK1 = 5.53 and pK2 = 7.78 [Blanchard and Cleland (1980) Biochemistry 19, 4506], an apparent rate constant for the isomerization segment of fumarate hydration is estimated as 95 +/- 22 s-1, compared to 42 +/- 13 s-1 for the chemical segment and 29 +/- 0.7 s-1 for a complete turnover. In contrast, the values are 17000 +/- 5200, 82 +/- 25, and 82 +/- 3 s-1, respectively, for malate dehydration. Hence, the isomerization segment is 30 +/- 7% rate-limiting during fumarate hydration but less than 1% during malate dehydration. Topics: Aconitic Acid; Animals; Carbon Dioxide; Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Catalysis; Cattle; Fumarate Hydratase; Fumarates; Isomerism; Kinetics; Malates; Models, Chemical; Swine; Water | 1994 |
Characterization of the nutritional interactions between organic acids and inorganic bases in the pig and chick.
Four experiments were conducted to characterize the interactions between fumaric (FA), malic (MA), or citric acid (CA) and NaHCO3. In two experiments, seven diets were formulated containing 2.5% FA, MA, and CA, with or without 2.3, 1.9, or 1.4% NaHCO3, respectively, as well as a control diet (no addition of organic acids or NaHCO3) for 28-d-old pigs (Exp. 1, corn-soy protein concentrate-based diet) and 1-wk-old chicks (Exp. 4, corn-soy-based diet). In Exp. 1, at 2 and 4 wk, the FA+NaHCO3 treatment resulted in greater average daily gain (ADG) and feed intake (ADFI) compared with the control (P < .05). In Exp. 2, 28-d-old pigs were fed corn-soy diets with .9, 1.6, and 2.3% NaHCO3 in addition to 2.5% FA. After wk 2, there was a quadratic response in ADG (P < .08) and ADFI (P < .05) when increasing levels of NaHCO3 were added to the diet. This was true at wk 4 for both ADG and ADFI (P < .05). In Exp. 3, finishing pigs were fed corn-soy diets containing 2.5% FA or 2.5% FA + 2.3% NaHCO3 added to a control diet. No effect (P < .05) of FA or NaHCO3 was observed. In Exp. 4, the combination of CA+NaHCO3 or MA+NaHCO3 was superior to FA+NaHCO3 for ADG (P < .08) and ADFI (P < .05) when fed to young chicks. Topics: Animal Feed; Animal Nutritional Physiological Phenomena; Animals; Carboxylic Acids; Chickens; Citrates; Citric Acid; Eating; Female; Fumarates; Hydrogen-Ion Concentration; Malates; Male; Random Allocation; Sodium Bicarbonate; Swine; Weight Gain | 1994 |
L-malic acid production by entrapped Saccharomyces cerevisiae into polyacrylamide gel beads.
The yeast Saccharomyces cerevisiae was entrapped within polyacrylamide gel beads by employing a procedure that uses sodium dodecylsulfate as a detergent to improve the spherical configuration of the beads. The resulting preparation showed a rate of fumarate bio-conversion to L-malic acid about 60 times higher than that found for the free cells. Almost all fumarate was converted in 30 min of incubation. The thermal stability of the immobilized cells did not significantly differ from the free cells. An optimal pH of 5.7 was found for the immobilized preparation and no succinic acid was detected as a byproduct in the incubation mixture. Topics: Acrylic Resins; Fumarates; Hot Temperature; Hydrogen-Ion Concentration; Malates; Microspheres; Saccharomyces cerevisiae | 1994 |
Fumarate catabolism in Helicobacter pylori.
The metabolism of fumarate by Helicobacter pylori was investigated employing one- and two-dimensional 1H and 13C nuclear magnetic resonance spectroscopy. Metabolically competent cells generated malate and succinate from fumarate as the sole substrate indicating the presence of fumarase and fumarate reductase activities in the bacterium. In incubations of fumarate with cell lysates accumulation of lactate, acetate, formate and alanine was observed after the initial production of malate and succinate. The results indicate the existence of active fumarate catabolism in H. pylori and suggest the possibility of an ATP generating mechanism which may play an important role in the bioenergetics of the bacterium. Topics: Acetates; Alanine; Energy Metabolism; Formates; Fumarates; Helicobacter pylori; Kinetics; Lactates; Lactic Acid; Magnetic Resonance Spectroscopy; Malates; Succinates; Succinic Acid | 1993 |
Synthesis of 3-arsonoalanine and its action on aspartate aminotransferase and aspartate ammonia-lyase. Comparison with arsenical analogues of malate and fumarate.
DL-3-Arsonoalanine has been synthesized by the Strecker synthesis from the unstable compound arsonoacetaldehyde. It inactivates pig heart cytosolic aspartate aminotransferase and inhibits aspartate ammonia-lyase by competing with aspartate (Ki/Km 0.23). The fumarate analogue (E)-3-arsonoacrylic acid and the malate analogue (RS)-3-arsonolactate also inhibit fumarate hydratase, competing with fumarate (Ki/Km 1.8) and malate (Ki/Km 1.6) respectively. Attempted non-enzymic transamination of 3-arsonoalanine gave elimination of arsenite, in contrast with the transamination of 3-phosphonoalanine, which is either successful or leads to loss of phosphate. Topics: Alanine; Arsenic; Arsenicals; Aspartate Aminotransferases; Aspartate Ammonia-Lyase; Enzyme Inhibitors; Fumarate Hydratase; Fumarates; Malates | 1993 |
Proton transfer in catalysis by fumarase.
Using 3T[14C]malate it was possible to show intermolecular T-transfer to unlabeled fumarate. The rate of dissociation of ET derived from the malate was not rapid, only about as fast as required for KMcat. Because of the slow dissociation of ET derived from T-malate, the awkward complex ET-malate is readily formed. As shown by the effect of added malate on the partition of ET, otherwise captured by fumarate, ET.malate must be functional. Its rate of dissociation to E.M determines the V/Km value of malate. Hydrogen dissociation of the complex ET.F was linearly related to the concentration and basicity of the buffer provided, varying from < 10% to > 60% of the overall rate with alkyl phosphonates. Partition of EH.F to free malate or fumarate occurs in a ratio approximately 2:1 at both low and high buffer. This agrees well with the comparison of the equilibrium exchange rates: malate with [18O]water to malate with [14C]-fumarate [Hansen, J.N., Dinovo, E.C., & Boyer, P.D. (1969) J. Biol. Chem. 244, 6270-6279]. Therefore, the abstracted hydroxyl group is fully exchanged from the enzyme when the bound hydrogen and fumarate return to malate and must be much more accessible to the medium than the abstracted proton. The fact that buffer increases the rate of proton transfer to the medium in the central complex makes it appear that a proton relay connects the active site donor with a remote site that interfaces with the ultimate proton source, water. Topics: Binding, Competitive; Buffers; Catalysis; Enzyme Activation; Fumarate Hydratase; Fumarates; Hydrogen-Ion Concentration; Kinetics; Malates; Protons; Tritium; Water | 1992 |
The effect of various culture conditions on the levels of ammonia assimilatory enzymes of Corynebacterium callunae.
Corynebacterium callunae (NCIB 10338) grows faster on glutamate than ammonia when used as sole nitrogen sources. The levels of glutamine synthetase (GS; EC 6.3.1.2) and glutamate synthase (GOGAT; EC 1.4.1.13) of C. callunae were found to be influenced by the nitrogen source. Accordingly, the levels of GS and GOGAT activities were decreased markedly under conditions of ammonia excess and increased under low nitrogen conditions. In contrast, glutamate dehydrogenase (GDH; EC 1.4.1.4) activities were not significantly affected by the type or the concentration of the nitrogen source supplied. The carbon source in the growth medium could also affect GDH, GS and GOGAT levels. Of the carbon sources tested in the presence of 2 mM or 10 mM ammonium chloride as the nitrogen source pyruvate, acetate, fumarate and malate caused a decrease in the levels of all three enzymes as compared with glucose. GDH, GS and GOGAT levels were slightly influenced by aeration. Also, the enzyme levels varied with the growth phase. Methionine sulfoximine, an analogue of glutamine, markedly inhibited both the growth of C. callunae cells and the transferase activity of GS. The apparent Km values of GDH for ammonia and glutamate were 17.2 mM and 69.1 mM, respectively. In the NADPH-dependent reaction of GOGAT, the apparent Km values were 0.1 mM for alpha-ketoglutarate and 0.22 mM for glutamine. Topics: Ammonia; Corynebacterium; Culture Media; Fumarates; Glucose; Glutamate Dehydrogenase; Glutamate Synthase; Glutamate-Ammonia Ligase; Glutamates; Glutamic Acid; Kinetics; Malates; Methionine Sulfoximine | 1992 |
Fumaric acid production from hydrolysates of starch-based substrates.
Fumaric acid production by Rhizopus arrhizus from commercial hydrolysates of corn starch (i.e. glucose molasses) was studied at different initial concentrations of glucose (S) and C:N ratios (R) by performing a 3(2) factorial experiment. By using the response surface methodology and statistical analysis, fumaric acid (YF) and mycelial biomass (YX) yields, as referred to the initial concentration of glucose and fumaric acid productivity (PF), were fitted to the only significant first-order effects of S and R with mean percentage errors ranging from 11 to 15%. The resulting empiric models were used to determine the optimal values of S (100-130 g dm-3) and R (150-210 g-atom C per g-atom N) associated with YF and PF varying in the ranges 40-49% and 7-8.5 g dm-3 day-1, respectively. After establishing the validity of these data at the 95% confidence level, an optimal operating condition (S = 120 g dm-3 and R = 150) was further tested using other substrates (i.e. glucose and acid or enzymatic hydrolysates of cassava, corn and potato flours). Statistically significant improvements in the fumaric acid yield and productivity were determined with respect to the predicted values. Since the highest values of YF and PF were obtained from the acid hydrolysates of the starch-based materials and such values were also found to be insensitive to the substrate used (at a probability level of 0.05), the above operating condition might be further employed to minimise fumaric acid production costs as a function of the feedstock used. Topics: Culture Media; Fermentation; Flour; Fumarates; Glucose; Hydrolysis; Industrial Microbiology; Malates; Manihot; Models, Biological; Molasses; Rhizopus; Solanum tuberosum; Starch | 1992 |
A comparative study of the effects of phebrol on the respiratory chains of rat liver, Biomphalaria glabrata and Oncomelania nosophora.
1. Phebrol (sodium 2,5-dichloro-4-bromophenol), a synthetic molluscicide against Oncomelania nosophora, showed a dual effect on rat liver submitochondria, acting as an uncoupler at low concentrations (approximately 10 microM) and an inhibitor of succinate-cytochrome c reductase at high concentrations. 2. Phebrol also inhibited the enzymes responsible for succinate-fumarate conversion, i.e. the succinate-cytochrome c reductase, fumarate reductase and NADH-cytochrome c reductase of the mitochondrial fraction from Biomphalaria glabrata. 3. Kinetic inhibition studies showed succinate-cytochrome c reductase of B. glabrata and O. nosophora to be more sensitive than that of rat liver toward phebrol. 4. Phebrol accumulated in whole tissues of B. glabrata and O. nosophora and had significant effects on the production of succinate, fumarate and malate by these snails. 5. On the basis of these results, the possible sites of inhibition by phebrol of snail respiratory chains are proposed. Topics: Animals; Biomphalaria; Chlorophenols; Fumarates; Kinetics; Liver; Malates; Mitochondria; Molluscacides; NADH Dehydrogenase; Oxygen Consumption; Rats; Snails; Succinate Cytochrome c Oxidoreductase; Succinate Dehydrogenase; Succinates; Succinic Acid; Uncoupling Agents | 1991 |
L-malic acid production using immobilized Saccharomyces cerevisiae.
L-Malate was produced from fumarate by using immobilized Saccharomyces cerevisiae cells entrapped in polyacrylamide. This preparation performed better when pretreated with malonate. Under the experimental conditions described here, succinate was not detected as a by-product of the reaction, as had been reported for other microorganisms. Topics: Acrylic Resins; Biotechnology; Detergents; Fumarate Hydratase; Fumarates; Malates; Saccharomyces cerevisiae; Succinates; Succinic Acid | 1991 |
Quinone mediated electron transport system in the filarial parasite Setaria digitata.
Setaria digitata, a cattle filarial parasite, is known to have peculiarities such as hydrogen peroxide (H2O2) production, cyanide insensitivity, absence of cytochromes and presence of quinones. Estimation of mitochondrial H2O2 with different substrates and inhibitors showed that salicylhydroxamic acid (SHAM), the alternative oxidase inhibitor, inhibited the H2O2 production maximally. Based on the inhibitory studies with rotenone, antimycin A, o-hydroxydiphenyl, SHAM and 2 thenoyltrifluoroacetone, a mechanism for the electron transport is proposed. Quinone Q8 seems to have a central role, hence inhibitors at the level of quinones might prove to be effective in designing drugs for filariasis. Topics: Animals; Antimycin A; Biphenyl Compounds; Cyanides; Electron Transport; Filarioidea; Fumarates; Glycerophosphates; Hydrogen Peroxide; Malates; Mitochondria; Quinones; Rotenone; Salicylamides; Succinates; Succinic Acid; Thenoyltrifluoroacetone | 1991 |
Inducible overexpression of the FUM1 gene in Saccharomyces cerevisiae: localization of fumarase and efficient fumaric acid bioconversion to L-malic acid.
Cloning of the Saccharomyces cerevisiae FUM1 gene downstream of the strong GAL10 promoter resulted in inducible overexpression of fumarase in the yeast. The overproducing strain exhibited efficient bioconversion of fumaric acid to L-malic acid with an apparent conversion value of 88% and a conversion rate of 80.4 mmol of fumaric acid/h per g of cell wet weight, both of which are much higher than parameters known for industrial bacterial strains. The only product of the conversion reaction was L-malic acid, which was essentially free of the unwanted by-product succinic acid. The GAL10 promoter situated upstream of a promoterless FUM1 gene led to production and correct distribution of the two fumarase isoenzyme activities between cytosolic and mitochondrial subcellular fractions. The amino-terminal sequence of fumarase contains the mitochondrial signal sequence since (i) 92 of 463 amino acid residues from the amino terminus of fumarase are sufficient to localize fumarase-lacZ fusions to mitochondria and (ii) fumarase and fumarase-lacZ fusions lacking the amino-terminal sequence are localized exclusively in the cytosol. The possibility that both mitochondrial and cytosolic fumarases are derived from the same initial translation product is discussed. Topics: Cloning, Molecular; Enzyme Induction; Fumarate Hydratase; Fumarates; Gene Expression; Genes, Fungal; Malates; Saccharomyces cerevisiae | 1990 |
[The effect of composition and ionic strength of external solution on the aspartate-ammonia lyase and fumarate hydratase activity in Escherichia coli cells].
It was found that the nonspecific effect of ionic strength of the external solution on the enzymatic activity of E. coli cells consists in rapid changes in the permeability of cell membranes interacting with the substrate. This effect depends on the initial substrate concentration, i.e., ionic strength of the external solution, and is maintained for some time as the substrate concentration decreases. Chloramphenicol, a protein synthesis inhibitor, and sodium azide, a respiration inhibitor (300 micrograms/ml and 200 microM, respectively) do not change the enzymatic activity of E. coli cells during the synthesis of L-aspartic and L-malic acids from fumaric acid. The kinetic equations of L-aspartate and L-malate synthesis are described by equations of zero and intermediate (between zero and first) order, respectively. Topics: Ammonia-Lyases; Aspartate Ammonia-Lyase; Aspartic Acid; Azides; Catalysis; Cell Membrane Permeability; Chloramphenicol; Escherichia coli; Fumarate Hydratase; Fumarates; Kinetics; Malates; Osmolar Concentration; Sodium Azide; Substrate Specificity | 1989 |
The purine nucleotide cycle activity in renal cortex and medulla.
Formation of adenine nucleotides, IMP, malate + fumarate, ammonia, adenosine, and inosine + hypoxanthine + uric acid were measured in cytosolic extracts from renal cortex and medulla. The order of substrate addition was IMP, then 2-deoxyglucose, then P-creatine. Compared with cortex, medulla showed greater rates of formation of adenosine triphosphate (ATP) from P-creatine, of adenosine monophosphate (AMP) from 2-deoxyglucose, and of total adenine nucleotides from IMP. These results suggest that the purine nucleotide cycle is more active in medulla than in cortex. This cycle may provide a mechanism in medulla for storing purine nucleotides which can be used to restore ATP pools in the relatively hypoxic conditions of this part of the kidney. Topics: Adenosine Monophosphate; Adenosine Triphosphate; Animals; Aspartic Acid; Cytosol; Fumarates; In Vitro Techniques; Inosine Monophosphate; Kidney Cortex; Kidney Medulla; Malates; Purine Nucleotides; Rats; Rats, Inbred Strains | 1989 |
Evidence for succinate production by reduction of fumarate during hypoxia in isolated adult rat heart cells.
It has been demonstrated that perfusion of myocardium with glutamic acid or tricarboxylic acid cycle intermediates during hypoxia or ischemia, improves cardiac function, increases ATP levels, and stimulates succinate production. In this study isolated adult rat heart cells were used to investigate the mechanism of anaerobic succinate formation and examine beneficial effects attributed to ATP generated by this pathway. Myocytes incubated for 60 min under hypoxic conditions showed a slight loss of ATP from an initial value of 21 +/- 1 nmol/mg protein, a decline of CP from 42 to 17 nmol/mg protein and a fourfold increase in lactic acid production to 1.8 +/- 0.2 mumol/mg protein/h. These metabolite contents were not altered by the addition of malate and 2-oxoglutarate to the incubation medium nor were differences in cell viability observed; however, succinate release was substantially accelerated to 241 +/- 53 nmol/mg protein. Incubation of cells with [U-14C]malate or [2-U-14C]oxoglutarate indicates that succinate is formed directly from malate but not from 2-oxoglutarate. Moreover, anaerobic succinate formation was rotenone sensitive. We conclude that malate reduction to succinate occurs via the reverse action of succinate dehydrogenase in a coupled reaction where NADH is oxidized (and FAD reduced) and ADP is phosphorylated. Furthermore, by transaminating with aspartate to produce oxaloacetate, 2-oxoglutarate stimulates cytosolic malic dehydrogenase activity, whereby malate is formed and NADH is oxidized. In the form of malate, reducing equivalents and substrate are transported into the mitochondria where they are utilized for succinate synthesis. Topics: Adenosine Triphosphate; Animals; Cell Survival; Chromatography, High Pressure Liquid; Deoxyglucose; Fumarates; Hypoxia; Ketoglutaric Acids; Malates; Myocardium; Phosphocreatine; Rats; Succinates; Succinic Acid | 1987 |
Anion transport in rat brain mitochondria: fumarate uptake via the dicarboxylate carrier.
Penetration of fumarate into rat brain mitochondria has been investigated, as required in brain ammoniogenesis. Mitochondria swell in ammonium fumarate and this swelling is increased by both Pi and malate. According to a carrier mediated process, fumarate translocation, which occurs in exchange with intramitochondrial malate or Pi shows saturation characteristics. By photometrically investigating the kinetics of fumarate/malate, fumarate/Pi and malate/Pi exchanges, different Km values were obtained (10, 22 and 250 microM, respectively), whereas no significant difference was found for Vmax values (40 nmol NAD(P)+ reduced/min X mg protein). This suggests that fumarate and malate share a single carrier to enter mitochondria, namely the dicarboxylate carrier. Both comparison made of the Vmax values and inhibition studies exclude a fumarate translocation via either the tricarboxylate carrier, whose occurrence in brain is here demonstrated, or oxodicarboxylate carrier. Kinetic investigation of the dicarboxylate translocator shows the existence of thiol group/s and metal ion/s at or near the substrate binding sites. The experimental findings are discussed in the light of fumarate uptake in vivo in brain ammoniogenesis. Topics: Animals; Biological Transport; Brain; Carrier Proteins; Chemical Phenomena; Chemistry; Fumarates; In Vitro Techniques; Malates; Male; Mitochondria; Phenanthrolines; Phosphates; Rats; Rats, Inbred Strains; Zinc | 1987 |
Pig heart fumarase really does exhibit negative kinetic co-operativity at a constant ionic strength.
The kinetics of the action of fumarase on L-malate and fumarate were investigated at constant ionic strength. This was done to evaluate reports that fumarase follows simple Michaelis-Menten kinetics. However, when pH, buffer concentration and ionic strength are all maintained at constant values, the Lineweaver-Burk plots exhibit pronounced downward curvature, characteristic of negative kinetic co-operativity. Topics: Animals; Fumarate Hydratase; Fumarates; Kinetics; Malates; Myocardium; Osmolar Concentration; Swine | 1986 |
Modified alkaloid pattern in developing tobacco callus.
Developing Nicotiana tabacum L. cv. Wisconsin-38 callus grown on modified Murashige-Skoog (MS) medium with Kao organic acids (pyruvic, citric, malic and fumaric acids) contains abnormally high levels of nornicotine and total alkaloids when compared with the leaves of the donor plant. Nornicotine/nicotine ratios observed during callus development suggest that nicotine is converted into nornicotine in the callus, with subsequent movement of alkaloids into roots formed on the callus and into the agar medium. Addition of Kao organic acids to the medium increases alkaloid levels, but cannot account for the abnormal increase in nicotine demethylation. This study thus reports two new findings: (a) that the total alkaloid content of tobacco callus can be greatly enhanced to 3.75% on a dry weight basis by exogenous organic acids, and (b) that endogenous nornicotine can accumulate in tobacco tissue cultures. Topics: Alkaloids; Anabasine; Carboxylic Acids; Citric Acid; Culture Media; Culture Techniques; Fumarates; Malates; Nicotiana; Nicotine; Plant Roots; Plants, Toxic; Pyridines; Pyrrolidines; Pyruvic Acid | 1985 |
Thermodynamics of the conversion of fumarate to L-(-)-malate.
The thermodynamics of the conversion of aqueous fumarate to L-(-)-malate has been investigated using both heat conduction microcalorimetry and a gas chromatographic method for determining equilibrium constants. The reaction was carried out in aqueous Tris-HCl buffer over the pH range 6.3-8.0, the temperature range 25-47 degrees C, and at ionic strengths varying from 0.0005 to 0.62 mol kg-1. Measured enthalpies and equilibrium ratios have been adjusted to zero ionic strength and corrected for ionization effects to obtain the following standard state values for the conversion of aqueous fumarate 2- to malate 2- at 25 degrees C: K = 4.20 +/- 0.05, delta G degrees = -3557 +/- 30 J mol-1, delta H degrees = -15670 +/- 150 J mol-1, and delta C degrees p = -36 +/- J mol-1 K-1. Equations are given which allow one to calculate the combined effects of pH and temperature on equilibrium constants and enthalpies of this reaction. Topics: Animals; Chickens; Fumarate Hydratase; Fumarates; Hydrogen-Ion Concentration; Kinetics; Malates; Myocardium; Thermodynamics | 1985 |
Fumarate permeation in rat liver mitochondria: fumarate/malate and fumarate/phosphate translocators.
Fumarate permeation in isolated rat liver mitochondria was demonstrated by measuring malate and phosphate efflux caused by fumarate added externally to the mitochondrial suspension. The existence of two specific fumarate translocators, fumarate/malate and fumarate/phosphate, is shown here. These carriers are distinguished in the light of different kinetic parameters (Km values are 50 microM and 150 microM, and Vmax values are 17 and 40 nmoles/min X mg mitochondrial protein, respectively) and of differing sensitivity to non-penetrant compounds. Fumarate was found to cause oxaloacetate efflux from mitochondria by means of an indirect process which involves the cooperation of both fumarate/malate and malate/oxaloacetate translocators. Results are discussed in the light of the physiological role played by fumarate translocation in both ureogenesis and aminoacid metabolism. Topics: Animals; Biological Transport, Active; Citric Acid Cycle; Ethylmaleimide; Fumarates; Kinetics; Malates; Malonates; Mersalyl; Mitochondria, Liver; Models, Biological; Phosphates; Rats; Succinates | 1985 |
Membrane enzymes associated with the dissimilation of some citric acid cycle substrates and production of extracellular oxidation products in chemostat cultures of Pseudomonas fluorescens.
Enzyme activities forming extracellular products from succinate, fumarate, and malate were examined using washed cell suspensions of Pseudomonas fluorescens from chemostat cultures. Membrane-associated enzyme activities (glucose, gluconate, and malate dehydrogenases), producing large accumulations of extracellular oxidation products in carbon-excess environments, have previously been found in P. fluorescens. Investigations carried out here have demonstrated the presence in this microorganism of a malic enzyme activity which produces extracellular pyruvate from malate in carbon-excess environments. Although the three membrane dehydrogenase enzymes decrease significantly in carbon-limited chemostat cultures, malic enzyme activity was found to increase fourfold under these conditions. The regulation of malate dehydrogenase and malic enzyme by malate or succinate was similar. Malate dehydrogenase increased and malic enzyme decreased in carbon-excess cultures. The opposite effect was observed in carbon-limited cultures. When pyruvate or glucose was used as the carbon source, malate dehydrogenase was regulated similarly by the available carbon concentration, but malic enzyme activity producing extracellular pyruvate was not detected. While large accumulations of extracellular oxalacetate and pyruvate were produced in malate-excess cultures, no extracellular oxidation products were detected in succinate-excess cultures. This may be explained by the lack of detectable activity for the conversion of added external succinate to extracellular fumarate and malate in cells from carbon-excess cultures. In cells from carbon-limited (malate or succinate) cultures, very active enzymes for the conversion of succinate to extracellular fumarate and malate were detected. Washed cell suspensions from these carbon-limited cultures rapidly oxidized added succinate to extracellular pyruvate through the sequential action of succinate dehydrogenase, fumarase, and malic enzyme. Succinate dehydrogenase and fumarase activities producing extracellular products were not detected in cells from chemostat cultures using pyruvate or glucose as the carbon source. Uptake activities for succinate, malate, and pyruvate also were found to increase in carbon-limited (malate or succinate) and decrease in carbon-excess cultures. The role of the membrane-associated enzymes forming different pathways for carbon dissimilation in both carbon-limited and carbon-excess environments is discussed. Topics: Ammonia; Carbohydrate Dehydrogenases; Cell Membrane; Citric Acid Cycle; Fumarate Hydratase; Fumarates; Glucose; Glucose 1-Dehydrogenase; Glucose Dehydrogenases; Malate Dehydrogenase; Malates; Oxaloacetates; Oxidation-Reduction; Pseudomonas; Pseudomonas fluorescens; Pyruvates; Pyruvic Acid; Succinate Dehydrogenase; Succinates; Succinic Acid | 1984 |
Energy metabolism in Cotugnia digonopora and the effect of anthelmintics.
Incorporation of 32Pi into organic phosphate by mitochondria of Cotugnia digonopora was supported maximally by malate. Fumarate and succinate induced lower but significant production of ATP. Pyruvate, alpha-ketoglutarate and oxalacetate proved to be poor substrates and citrate and isocitrate had no effect. A net phosphorylation of approximately 2 mol of ADP was observed for each mol of CO2 liberated from malate or succinate. In contrast, with pyruvate, in spite of a high rate of decarboxylation, the production of ATP was extremely low. 2,4-Dinitrophenol inhibited phosphorylation. All anthelmintics examined interfered with the mitochondrial phosphorylation of ADP, with maximum inhibition by salicylanilide compounds. The anticestodal activity of the latter group of compounds, niclosamide for example, may, therefore, be attributed to their ability to inhibit mitochondrial phosphorylation. Topics: Animals; Anthelmintics; Cestoda; Energy Metabolism; Fumarates; Malates; Mitochondria; Phosphates; Phosphorylation; Pyruvates; Pyruvic Acid | 1984 |
Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase.
Two recombinant plasmid Escherichia coli strains containing amplified fumarate reductase activity converted fumarate to succinate at significantly higher rates and yields than a wild-type E. coli strain. Glucose was required for the conversion of fumarate to succinate, and in the absence of glucose or in cultures with a low cell density, malate accumulated. Two-dimensional gel electrophoretic analysis of proteins from the recombinant DNA and wild-type strains showed that increased quantities of both large and small fumarate reductase subunits were expressed in the recombinant DNA strains. Topics: Ammonium Sulfate; DNA, Recombinant; Escherichia coli; Fumarates; Glucose; Malates; Oxidoreductases; Oxidoreductases Acting on CH-CH Group Donors; Plasmids; Succinates; Succinic Acid | 1983 |
Succinate transport by free-living forms of Rhizobium japonicum.
We have demonstrated that the transport of succinate into the cells of Rhizobium japonicum strains USDA 110 and USDA 217 is severely inhibited by cyanide, azide, and 2,4-dinitrophenol, but not by arsenate. These results suggest an active mechanism of transport that is dependent on an energized membrane, but does not directly utilize ATP. The apparent Km for succinate was 3.8 microM for strain USDA 110 and 1.8 microM for strain USDA 217; maximal transport velocities were 1.5 and 3.3 nmol of succinate per min per mg of protein, respectively. The expression of the succinate uptake activity was inducible rather than constitutive, with succinate and structurally related compounds being the most effective inducers. The mechanism showed some specificity for succinate and similar organic acids; fumarate and L-malate were classical competitive inhibitors of the system. In general, the best competing compounds were also the best carbon substrates for induction of succinate uptake activity. EDTA inhibited the transport of succinate, implying a role for divalent cations in the system. When various divalent cations were used to reconstitute EDTA-inhibited activity, Ca2+ was most effective, followed by Mg2+, which restored activity at about half the efficiency of Ca2+. Growth media that were supplemented with increased Ca2+ concentration supported more rapid growth with succinate as the carbon substrate, and cells from such media showed higher specific activities of succinate transport. Topics: Biological Transport; Cations, Divalent; Edetic Acid; Fumarates; Kinetics; Malates; Rhizobium; Succinates; Succinic Acid | 1983 |
Stereochemical studies on the hydration of monofluorofumarate and 2,3-difluorofumarate by fumarase.
Stereochemical and product analyses have been studied in our continuing work on the bioprocessing of fluorinated substrate analogues. The hydration pathways of the fumarase-catalyzed reaction on fluorofumarate lead to a product distribution of L-threo-beta-fluoromalate to oxalacetate of 1 to 16. The beta-fluoromalate product has not been previously reported. Oxalacetate formation from the initial product, alpha-fluoromalate, an alpha-fluorohydrin, proceeds by way of a direct nonenzymic decomposition path (as opposed to collapse to the enol of oxalacetate with subsequent tautomerization). Difluorofumarate is hydrated to an alpha-fluorohydrin, alpha, beta-difluoromalate, which decomposes to 3(S)-fluorooxalacetate trapped by in situ malate dehydrogenase mediated reduction to L-threo-beta-fluoromalate (2R,3S). L-threo-Fluoro[2-3H]-malate is a slow substrate for the reverse reaction as measured by labilization of 3H while the erythro isomer is barely detectable. The pathways responsible for this volatilization are discussed. Acetylenedicarboxylate hydration stereochemistry was also determined where the initial product of the reaction, the enol of oxalacetate, tautomerized and was trapped by enzymic reduction to L-malate. Topics: Fumarate Hydratase; Fumarates; Malates; Models, Chemical; Oxaloacetates; Stereoisomerism | 1982 |
Half-time analysis of the integrated Michaelis equation. Simulation and use of the half-time plot and its direct linear variant in the analysis of some alpha-chymotrypsin, papain- and fumarase-catalysed reactions.
Substitution of half-time parameters in the integrated form of the Michaelis-Menten equation for any enzyme-catalysed reaction yields an equation that gives a linear relationship between the half-time of the reaction and the substrate concentration at that point of the reaction. The logarithmic term of the integrated equation becomes a constant as a result of the substitution, which means that the use of the half-time plot of the equation requires calculation only of half-time and substrate-concentration values at various stages of the reaction. The half-time method is both simple and exact, being analogous to an [S(0)]/v(i) against [S(0)] plot. A direct linear form of the half-time plot has been devised that allows very simple estimation of Michaelis parameters and/or initial velocities from progress-curve data. This method involves no approximation and is statistically valid. Simulation studies have shown that linear-regression analysis of half-time plots provides unbiased estimates of the Michaelis parameters. Simulation of the effect of error in estimation of the product concentration at infinite time [P(infinity)] reveals that this is always a cause for concern, such errors being magnified approximately an order of magnitude in the estimate of the Michaelis constant. Both the half-time plot and the direct linear form have been applied to the analysis of a variety of experimental data. The method has been shown to produce excellent results provided certain simple rules are followed regarding criteria of experimental design. A set of rules has been formulated that, if followed, allows progress-curve data to be acquired and analysed in a reliable fashion. It is apparent that the use of modern spectrophotometers in carefully designed experiments allows the collection of data characterized by low noise and accurate [P(infinity)] estimates. [P(infinity)] values have been found, in the present work, to be precise to within +/-0.2% and noise levels have always been below 0.1% (signal-to-noise ratio approximately 1000). As a result of the considerations above, it is concluded that there is little to be feared with regard to the analysis of enzyme kinetics using complete progress curves, despite the generally lukewarm recommendations to be found in the literature. The saving in time, materials and experimental effort amply justify analysis of enzyme kinetics by progress-curve methods. Half-time plots linear to >/=90% of reaction have been obtained for some alp Topics: Chymotrypsin; Fumarate Hydratase; Fumarates; Glycine; Hydrolysis; Kinetics; Malates; Methods; Microcomputers; Models, Biological; Papain | 1982 |
Repression of penicillin G acylase of Proteus rettgeri by tricarboxylic acid cycle intermediates.
The regulation of the penicillin acylase in proteus rettgeri ATCC 31052 was compared with that of the enzyme in Escherichia coli ATCC 9637. Unlike the E. coli acylase, the P. rettgeri enzyme was not induced by phenylacetic acid, nor was it subject to catabolite repression by glucose. The P. rettgeri acylase appears to be expressed constitutively but is subject to repression by the C4-dicarboxylic acids of the tricarboxylic acid cycle, succinate, fumarate, and malate. Topics: Amidohydrolases; Citrates; Citric Acid; Dicarboxylic Acids; Enzyme Induction; Enzyme Repression; Fumarates; Glucose; Glycerol; Malates; Penicillin Amidase; Proteus; Succinates | 1982 |
Purine nucleotide cycle as a possible anaplerotic process in rat skeletal muscle.
Topics: Animals; Cytosol; Fumarates; Malates; Mitochondria; Muscles; Oxidation-Reduction; Oxygen Consumption; Purine Nucleotides; Pyruvates; Pyruvic Acid; Rats | 1982 |
Spin ECHO proton NMR studies of the metabolism of malate and fumarate in human erythrocytes. Dependence on free NAD levels.
The NAD-dependent conversion of malate to lactate in human erythrocytes was studied by spin echo proton NMR. A pathway involving the decarboxylation of oxaloacetate catalysed by haemoglobin is proposed to account for the observed reaction. NADP-dependent reaction was negligible. The rate of the reaction was measured in intact erythrocytes under controlled conditions. This rate correlates with that obtained with lysates at 30 microM free NAD and that obtained with purified human erythrocyte enzymes at about 15 microM NAD. The total extractable NAD in the intact cells was 70-90 microM. Experiments with cells containing elevated NAD levels could be explained by a significant fraction of the NAD being weakly bound (Kd about 1 mM) to haemoglobin. Topics: Biological Transport; Erythrocytes; Fumarate Hydratase; Fumarates; Humans; Kinetics; Lactates; Lactic Acid; Magnetic Resonance Spectroscopy; Malates; NAD | 1982 |
Influence of tricarboxylic acid cycle intermediates and related metabolites on the biosynthesis of aflatoxin by resting cells of Aspergillus flavus.
Resting cells of Aspergillus flavus synthesized aflatoxin from acetate as the sole carbon source after 36 h of incubation. Addition of pyruvate (5.5 mg/m) as cosubstrate to [1-14C]acetate and unlabeled acetate considerably reduced toxin production but increased the radioactivity on the tricarboxylic acid intermediates. This suggests that high tricarboxylic acid activity drastically affected toxin synthesis. Topics: Acetates; Aflatoxins; Aspergillus flavus; Citric Acid Cycle; Fumarates; Malates; Pyruvates; Pyruvic Acid | 1981 |
Biosynthetic and bioenergetic functions of citric acid cycle reactions in Rhodopseudomonas capsulata.
Rhodopseudomonas capsulata can grow in a number of alternative modes, including (i) photosynthetic, defined here as anaerobic growth with light as the energy source, and (ii) heterotrophic, referring to aerobic heterotrophic growth in darkness. The functions of citric acid cycle sequences in these growth modes were investigated using wild-type and appropriate mutant strains. Results of growth tests and O(2) utilization experiments showed that in the heterotrophic mode, energy conversion is dependent on operation of the classical citric acid cycle. Alpha-ketoglutarate dehydrogenase (KGD) activity in wild-type strain B10 is substantially higher in cells grown heterotrophically than in cells grown photosynthetically. Molecular oxygen, even at low concentration, appears to be important in regulation of KGD synthesis and, thus, in expression of citric acid cycle activity. Extracts of (photosynthetically grown) mutant strain KGD11 lack demonstrable KGD activity, and in contrast to the wild type, KGD11 is unable to grow heterotrophically on succinate, malate, or pyruvate owing to failure of the energy conversion function of the citric acid cycle. KGD11, however, grows well photosynthetically on malate or on CO(2) + H(2). The KGD activity level required to support the bioenergetic function of the citric acid cycle is evidently much higher than that necessary to satisfy biosynthetic demands; thus, a very low rate of succinyl-coenzyme A formation (needed for biosynthesis) in the mutant would suffice for growth under photosynthetic conditions. In wild-type R. capsulata, the alpha-ketoglutarate required for glutamate synthesis is ordinarily generated via citric acid cycle reactions, which include the conversions catalyzed by citrate synthase and isocitrate dehydrogenase. Mutants blocked in the former or both of these enzymes can grow photosynthetically if provided with an exogenous source of alpha-ketoglutarate or glutamate, but grow very poorly (if at all) as heterotrophs since the energy supply under these conditions depends on operation of the complete citric acid cycle. Topics: Citrate (si)-Synthase; Citric Acid Cycle; Fumarates; Isocitrate Dehydrogenase; Ketoglutarate Dehydrogenase Complex; Malates; Oxaloacetates; Oxygen Consumption; Photosynthesis; Rhodopseudomonas | 1981 |
Relationships between pyruvate decarboxylation and branched-chain volatile acid synthesis in Ascaris mitochondria.
The rate of 14CO2 evolution from 1-[14C]pyruvate by intact Ascaris mitochondria was very slow, but increased with increasing concentrations of pyruvate. At all concentrations of pyruvate, in an aerobic environment, pyruvate decarboxylation was stimulated greatly by the addition of fumarate, malate, or succinate. However, under anaerobic conditions, only malate and fumarate stimulated pyruvate decarboxylation; succinate had no effect. This implies that the aerobic metabolism of succinate, presumably to other dicarboxylic acids, may be required for the stimulation. Incubation of sonicated mitochondria with pyruvate plus fumarate, under rate-limiting concentrations of NAD+, resulted in approximately equal quantities of pyruvate utilized and succinate formed, suggesting that pyruvate oxidation and fumarate reduction may be linked. Branched-chain, volatile fatty acids were not formed during incubations with either malate or succinate, or succinate plus acetate. However, incubations of intact Ascaris mitochondria with pyruvate plus succinate yielded 2-methylbutyrate and 2-methylvalerate, whereas incubations with pyruvate plus propionate yielded almost exclusively 2-methylvalerate. Oxygen dramatically inhibited the synthesis of the branched-chain acids from succinate plus pyruvate, attesting to the apparent anaerobic nature of Ascaris mitochondrial metabolism. Significantly, the addition of glucose plus ADP stimulated the formation of all volatile fatty acids. Therefore, the synthesis of branched-chain acids may be related directly to increased energy generation. Alternatively, they may function in the regulatory role of maintaining the mitochondrial redox balance. Topics: Adenosine Diphosphate; Animals; Ascaris; Fatty Acids, Volatile; Fumarates; Malates; Mitochondria; Oxidation-Reduction; Oxygen; Pyruvates; Pyruvic Acid; Succinates; Succinic Acid | 1981 |
[Utilization of L-aspartate, L-malate and fumarate by Pasteurella multocida].
Strains of Pasteurella multocida use L-aspartate, L-malate and furmarate, respectively, as substrates for production of succinic acid which accumulates in the medium. As was established by studies with 14C and 3H labelled substrates, the degradation of these substances proceeds analogous via the citric acid cycle. Topics: Aspartic Acid; Carbon Radioisotopes; Citric Acid Cycle; Fumarates; Kinetics; Malates; Pasteurella; Tritium | 1981 |
CYANIDE FORMATION BY CHROMOBACTERIUM VIOLACEUM.
Michaels, Ruth (Columbia University, New York, N.Y.), and W. A. Corpe. Cyanide formation by Chromobacterium violaceum. J. Bacteriol. 89:106-112. 1965.-The formation of cyanide by a Chromobacterium violaceum strain was studied with growing cultures and with nonproliferating cells grown in complex and chemically defined media. Most of the cyanide was produced during the log-phase growth of the organism, and accumulated in the culture supernatant fluid. A synergistic effect of glycine and methionine on cyanide formation in a chemically defined medium was observed, and the amount of cyanide formed was found to be dependent on the concentrations of the two substances. Cyanide formation by nonproliferating cells was stimulated by preincubation with glycine and methionine. Cyanide formation by adapted cells in the presence of glycine and methionine was stimulated by succinate, malate, or fumarate, and depressed by azide and 2,4-dinitrophenol. Methionine could be replaced by betaine, dimethylglycine, and choline. Topics: 2,4-Dinitrophenol; Amino Acids; Azides; Choline; Chromobacterium; Cyanides; Dinitrophenols; Fumarates; Glutamates; Glycine; Malates; Metabolism; Methionine; Pharmacology; Research; Succinates; Vitamin B 12 | 1965 |
METABOLISM OF PROPIONATE BY SHEEP LIVER. OXIDATION OF PROPIONATE BY HOMOGENATES.
1. The rate and stability to aging of the metabolism of propionate by sheep-liver slices and sucrose homogenates were examined. Aging for up to 20min. at 37 degrees in the absence of added substrate had little effect with slices, whole homogenates or homogenates without the nuclear fraction. 2. Metabolism of propionate by sucrose homogenates was confined to the mitochondrial fraction, but the mitochondrial supernatant (microsomes plus cell sap) stimulated propionate removal. 3. The rate of propionate metabolism by liver slices was higher in a high potassium phosphate-bicarbonate medium [0.88(+/-s.e.m. 0.16)mumole/mg. of N/hr.] than in Krebs-Ringer bicarbonate medium [0.44(+/-s.e.m. 0.13)mumole/mg. of N/hr.]. 4. Metabolism of propionate by sucrose homogenates freed from nuclei was dependent on the presence of oxygen, carbon dioxide and ATP. Propionate removal was stimulated 250% by Mg(2+) ions and 670% by cytochrome c. 5. In the complete medium 2.39(+/-s.e.m. 0.15)mumoles of propionate were consumed/mg. of N/hr. 6. The ratio of oxygen consumption to propionate utilization was sufficient to account for the complete oxidation of half the propionate consumed. 7. The only products detected under these conditions were succinate, fumarate and malate. Propionate had no effect on the production of lactate from endogenous sources and did not itself give rise to lactate. 8. Methylmalonate did not accumulate when propionate was metabolized and was not oxidized. It was detected as an intermediate in the conversion of propionyl-CoA into succinate. The rate of this reaction sequence was adequate to account for the rate of propionate metabolism by sucrose homogenates or slices, provided that the rate of formation of propionyl-CoA was not limiting. 9. The methylmalonate pathway was predominantly a mitochondrial function. 10. The metabolism of propionate appeared to be dependent on active oxidative phosphorylation. Topics: Acyl Coenzyme A; Adenosine Triphosphate; Animals; Bicarbonates; Carbon Dioxide; Chromatography; Coenzyme A; Dinitrophenols; Fatty Acids; Fumarates; Lipid Metabolism; Liver; Malates; Malonates; Manometry; Mitochondria; Oxidation-Reduction; Oxidative Phosphorylation; Pharmacology; Potassium Compounds; Propionates; Research; Sheep; Sheep, Domestic; Succinates | 1965 |
METABOLISM OF PROPIONATE BY SHEEP LIVER. INTERRELATIONS OF PROPIONATE AND GLUTAMATE IN AGED MITOCHONDRIA.
1. Low concentrations of l-glutamate were slowly and quantitatively converted into aspartate by aged sheep-liver mitochondria with the loss of C-1 of the glutamate. 2. When propionate was present in addition the rate of conversion of glutamate into aspartate was increased slightly, and the presence of glutamate caused a marked stimulation in the rate at which propionate was metabolized. 3. The stimulatory effect of ;sparker' amounts of l-glutamate on propionate metabolism was matched by the effects of alpha-oxoglutarate, pyruvate, citrate and isocitrate, but not by succinate, fumarate, malate or oxaloacetate. Succinate was stimulatory at higher concentrations, whereas oxaloacetate was inhibitory. 4. When propionate was incubated with l-[1-(14)C]glutamate in the presence of a large excess of unlabelled carbon dioxide, some labelling of dicarboxylic acids and aspartate occurred, but this was much less than would have been expected from an obligatory transcarboxylation from C-1 of alpha-oxoglutarate to propionyl-CoA. 5. Possible mechanisms of these effects are discussed. Topics: Acyl Coenzyme A; Aging; Amino Acids; Animals; Aspartic Acid; Carbon Dioxide; Citrates; Fatty Acids; Fumarates; Glutamates; Glutamic Acid; Ketoglutaric Acids; Liver; Malates; Mitochondria; Mitochondria, Liver; Oxaloacetates; Pharmacology; Propionates; Pyruvates; Research; Sheep; Sheep, Domestic; Succinates | 1965 |
THE RESPIRATION OF ISOLATED RAT-HEPATIC CELLS IN SUSPENSION.
1. Rat-hepatic cells in suspension have been shown to have an endogenous respiration of 5.6+/-0.17 when suspended in 0.1 m-sucrose and 0.02 m-tris-hydrochloric acid buffer. The respiration in 0.25 m-sucrose and 0.02 m-tris-hydrochloric acid buffer is 30-40% less. 2. Potassium chloride (0.05 m) is slightly inhibitory and calcium chloride (0.0025 m) highly inhibitory to endogenous respiration of the hepatic cells in suspension. The cells do not respire in Krebs-Ringer phosphate buffer. 3. The respiration of the hepatic cells in suspension is stimulated by pyruvate, citrate, isocitrate, oxoglutarate, succinate, fumarate, malate and glutamate; there is no significant stimulation (or inhibition) by glucose, fructose, acetate and butyrate. In almost all the cases where stimulation was observed, it was found that the higher the endogenous respiration the lower is the stimulation. Topics: Acetates; Citrates; Fumarates; Glucose; Glutamates; Hepatocytes; Ketoglutaric Acids; Liver; Malates; Manometry; Metabolism; Pyruvates; Rats; Research; Succinates | 1965 |
NUTRITIONAL CONTROL OF MORPHOGENESIS IN ARTHROBACTER CRYSTALLOPIETES.
Ensign, Jerald C. (University of Illinois, Urbana), and R. S. Wolfe. Nutritional control of morphogenesis in Arthrobacter crystallopoietes. J. Bacteriol. 87:924-932. 1964.-Arthrobacter crystallopoietes exhibits the cyclic, morphological variation which is a characteristic of this genus. A simple chemically defined medium was developed in which this organism is restricted to growth and division entirely in the coccoid form. Addition singly to this medium of l-arginine, l-phenylalanine, l-asparagine, l-lysine, succinate, malate, fumarate, lactate, or butyrate results in the formation of the rod-shaped stage. A large number of other compounds either increase, have no effect on, or inhibit growth without inducing morphological change in the organisms. Topics: Amino Acids; Arginine; Arthrobacter; Asparagine; Bacteriological Techniques; Butyrates; Colorimetry; Culture Media; Fumarates; Lactates; Lysine; Malates; Microscopy; Microscopy, Phase-Contrast; Morphogenesis; Phenylalanine; Research; Succinates | 1964 |
METABOLISM OF DICARBOXYLIC ACIDS IN ACETOBACTER XYLINUM.
Benziman, Moshe (The Hebrew University of Jerusalem, Jerusalem, Israel), and A. Abeliovitz. Metabolism of dicarboxylic acids in Acetobacter xylinum. J. Bacteriol. 87:270-277. 1964.-During the oxidation of fumarate or l-malate by whole cells or extracts of Acetobacter xylinum grown on succinate, a keto acid accumulated in the medium in considerable amounts. This acid was identified as oxaloacetic acid (OAA). No accumulation of OAA was observed when succinate served as substrate. These phenomena could be explained by the kinetics of malate, succinate, and OAA oxidation. OAA did not inhibit malate oxidation, even when present at high concentrations. When cells were incubated with OAA or fumarate in the presence of C(14)O(2), only the beta-carboxyl of residual OAA was found to be labeled. Evidence was obtained indicating that nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) are not directly involved in malate oxidation by cell-free extracts. The results suggest that malate oxidation in A. xylinum is irreversible, and is catalyzed by an enzyme which is not NAD- or NADP-linked. Topics: Acetates; Acetobacter; Dicarboxylic Acids; Fumarates; Gluconacetobacter xylinus; Israel; Keto Acids; Kinetics; Malates; Metabolism; NAD; NADP; Oxidation-Reduction; Research; Spectrophotometry; Succinates | 1964 |
METABOLIC ACTIVITY IN COXIELLA BURNETII.
Ormsbee, Richard A. (Rocky Mountain Laboratory, Hamilton, Mont.), and Marius G. Peacock. Metabolic activity in Coxiella burnetii. J. Bacteriol. 88:1205-1210. 1964.-Purified suspensions of Coxiella burnetii were shown to utilize alpha-ketoglutarate, succinate, fumarate, malate, oxaloacetate, pyruvate, glutamate, and serine. The addition of nicotinamide adenine dinucleotide(+) was necessary to elicit the maximal rate of oxygen uptake with l-glutamate as substrate, but was unnecessary when other substrates were employed. It was concluded that the Krebs cycle of intermediary carbohydrate metabolism probably operates within C. burnetii, and that pyruvate is the chief energy source. Topics: Acetates; Amino Acids; Carbohydrate Metabolism; Citric Acid Cycle; Coxiella; Coxiella burnetii; Fumarates; Glutamates; Glutamic Acid; Keto Acids; Ketoglutaric Acids; Malates; NAD; Oxaloacetates; Pyruvates; Research; Serine; Succinates | 1964 |
Cytochromelinked fermentation in Bacteroides ruminicola.
White, D. C. (Rockefeller Institute, New York, N.Y.), M. P. Bryant, and D. R. Caldwell. Cytochrome-linked fermentation in Bacteroides ruminicola. J. Bacteriol. 84:822-828. 1962-Previous studies showed that Bacteroides ruminicola, an anaerobic, saccharolytic, ruminal bacterium, ferments glucose with the production of succinic, acetic, and formic acids, requires a large amount of CO(2), and most strains require heme for growth. Difference spectra of cell suspensions of both heme-requiring strain 23, B. ruminicola subsp. ruminicola, and heme-independent strain GA33, B. ruminicola subsp. brevis, showed the presence of a cytochrome (absorption maxima at 560 mmu, near 530 mmu, and 428 mmu) similar to cytochrome b. This cytochrome and flavoprotein (trough at 450 mmu) in the cells, reduced by endogenous metabolism, were oxidized on addition of air, CO(2), oxalacetate, malate, or fumarate but no oxidation occurred in the presence of succinate, malonate, lactate, pyruvate, aspartate, citrate, NO(3) (-), SO(4) (=), 2-n-heptyl or hydroxyquinoline-N-oxide (HOQNO), amytal or azide. The oxidation of these cellular pigments by fumarate was not inhibited by CN(-), CO, malonate, succinate, amytal, or HOQNO. Glucose and reduced diphosphopyridine nucleotide (DPNH), but not succinate, reduced the pigments in frozen-thawed cells previously exposed to air for 4 hr at room temperature. The results suggest that this cytochrome and flavoprotein form an electron transport system for fumarate reduction to succinate by DPNH generated by glycolysis, and that succinate is produced via CO(2) condensation with pyruvate or phosphoenolpyruvate and with oxalacetate, malate, and fumarate as intermediates. A pigment similar to cytochrome o (absorption maxima at 570, 555, and 416 mmu) was observed when reduced cells were treated with CO and compared to reduced cells, but there was no detectable cytochrome oxidase activity. The function of this pigment is obscure. No peroxidase or catalase activity was detected in either strain. Pyridine hemochromogens of both strains indicate one major heme, a protoheme-like pigment, with absorption in the alpha region maximum at 556 mmu. As B. ruminicola is one of the most numerous of rumen bacteria and ferments a wide variety of carbohydrates of importance in ruminant rations, cytochrome must be of importance in electron transport in rumen contents, a highly anaerobic environment. Topics: Animals; Bacteroides; Cytochromes; Electron Transport; Energy Metabolism; Fermentation; Fumarates; Heme; Lactates; Malates; Oxidation-Reduction; Oxidoreductases; Prevotella ruminicola; Pyruvates; Succinates; Succinic Acid | 1962 |
On the mode of action of kanamycin. II. Effect of kanamycin on the oxidation of C4-dicar-boxylic acids (malate, fumarate and succinate) and diamine (putrescine) by avian tubercle bacilli.
Topics: Amines; Anti-Bacterial Agents; Fumarates; Kanamycin; Malates; Maleates; Mycobacterium; Mycobacterium avium; Putrescine; Succinates; Succinic Acid | 1960 |
Estimation of L-malate and fumarate by malic decarboxylase of Lactobacillus arabinosus.
Topics: Carboxy-Lyases; Fumarates; Lactobacillus plantarum; Lyases; Malates; Maleates | 1952 |
Enzymic method for the estimation of L-malic and fumaric acids.
Topics: Cyclohexanes; Enzymes; Fatty Acids, Unsaturated; Fumarates; Malates; Sesquiterpenes | 1951 |
Studies on the mechanism of acetate oxidation by bacteria. V. evidence for the participation of fumarate, malate, and oxalacetate in the oxidation of acetic acid by Escherichia coli.
1. Simultaneous oxidation of C(14)-methyl-labeled acetate, and unlabeled malate or fumarate and alpha-ketoglutarate results in entrapment of labeled carbon in the C(4)-dicarboxylic acids, but not in alpha-ketoglutarate, although all substrates are utilized at comparable rates. 2. A large endogenous reduction of all C(4)-dicarboxylic acids (fumarate, oxalacetate, and malate) to succinate is observed under aerobic conditions, and when vigorous oxidation is proceeding. This effect occurs with both freshly harvested young (18 hour) cells and stored (2 week) cells. 3. This reduction can be considerably minimized under high oxygen tensions. 4. The quantitative concordance of these results with a Thunberg-Knoop cyclic mechanism for acetate oxidation is shown. Possible alternative C(4) products formed prior to succinate are not completely excluded, but it appears that the cells can utilize the succinate condensation as a major pathway in acetate oxidation. Topics: Acetates; Acetic Acid; Bacteria; Escherichia coli; Fumarates; Ketoglutaric Acids; Malates; Oxidation-Reduction; Succinates | 1951 |
Direct transformation of fumarate to oxaloacetate, without intermediate formation of malate, by Clostridium saccharobutyricum, strain GR 4.
Topics: Bacteria; Clostridium; Fumarates; Malates; Oxaloacetates; Oxaloacetic Acid | 1949 |