fumarates and lonidamine

fumarates has been researched along with lonidamine* in 1 studies

Other Studies

1 other study(ies) available for fumarates and lonidamine

ArticleYear
Inhibition of Mitochondrial Complex II by the Anticancer Agent Lonidamine.
    The Journal of biological chemistry, 2016, Jan-01, Volume: 291, Issue:1

    The antitumor agent lonidamine (LND; 1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid) is known to interfere with energy-yielding processes in cancer cells. However, the effect of LND on central energy metabolism has never been fully characterized. In this study, we report that a significant amount of succinate is accumulated in LND-treated cells. LND inhibits the formation of fumarate and malate and suppresses succinate-induced respiration of isolated mitochondria. Utilizing biochemical assays, we determined that LND inhibits the succinate-ubiquinone reductase activity of respiratory complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through complex II, which reduced the viability of the DB-1 melanoma cell line. The ability of LND to promote cell death was potentiated by its suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. Using stable isotope tracers in combination with isotopologue analysis, we showed that LND increased glutaminolysis but decreased reductive carboxylation of glutamine-derived α-ketoglutarate. Our findings on the previously uncharacterized effects of LND may provide potential combinational therapeutic approaches for targeting cancer metabolism.

    Topics: Antineoplastic Agents; Cell Death; Cell Line, Tumor; Citric Acid Cycle; Diacetyl; Electron Transport Complex II; Fumarates; Glutamine; Glutathione; Humans; Indazoles; Malates; Melanoma; Metabolic Flux Analysis; Mitochondria; Models, Biological; NADP; Naphthalenes; Oxidation-Reduction; Pentose Phosphate Pathway; Reactive Oxygen Species; Succinic Acid

2016