fumarates has been researched along with glucose-1-phosphate* in 2 studies
2 other study(ies) available for fumarates and glucose-1-phosphate
Article | Year |
---|---|
Impact of Up- and Downregulation of Metabolites and Mitochondrial Content on pH and Color of the Longissimus Muscle from Normal-pH and Dark-Cutting Beef.
Limited knowledge is currently available on the biochemical basis for the development of dark-cutting beef. The objective of this research was to determine the metabolite profile and mitochondrial content differences between normal-pH and dark-cutting beef. A gas chromatography-mass spectrometer-based nontargeted metabolomic approach indicated downregulation of glycolytic metabolites, including glucose-1- and 6-phosphate and upregulation of tricarboxylic substrates such as malic and fumaric acids occurred in dark-cutting beef when compared to normal-pH beef. Neurotransmitters such as 4-aminobutyric acid and succinate semialdehyde were upregulated in dark-cutting beef than normal-pH beef. Immunohistochemistry indicated a more oxidative fiber type in dark-cutting beef than normal-pH beef. In support, the mitochondrial protein and DNA content were greater in dark-cutting beef. This increased mitochondrial content, in part, could influence oxygen consumption and myoglobin oxygenation/appearance of dark-cutting beef. The current results demonstrate that the more tricarboxylic metabolites and mitochondrial content in dark-cutting beef impact muscle pH and color. Topics: Animals; Cattle; Color; Fumarates; Glucosephosphates; Hydrogen-Ion Concentration; Malates; Meat; Mitochondria; Muscle, Skeletal; Myoglobin; Oxidation-Reduction | 2020 |
Revised procedures for yeast metabolites extraction: application to a glucose pulse to carbon-limited yeast cultures, which reveals a transient activation of the purine salvage pathway.
In this study we have revised our original procedure of yeast metabolites extraction. We showed that: (a) less than 5% of intracellular metabolites leaks out during the step of rapid arrest of cellular metabolism by quenching yeast cells into a 60% methanol solution kept at -40 degrees C; and (b) with a few exception, the stability of metabolites were not altered during the 3 min boiling procedure in a buffered ethanol solution. However, there was a loss of external added metabolites of 5-30%, depending on the type of metabolites. This was mainly attributable to their retention on cellular debris after ethanol treatment, which prevented centrifugation of the cellular extracts before evaporation of ethanol. We further simplified our previous high-performance ionic chromatography (HPIC) techniques for easier, more reliable and robust quantitative measurements of organic acids, sugar phosphates and sugar nucleotides, and extended these techniques to purine and pyrimidine bases, using a variable wavelength detector set at 220 and 260 nm in tandem with a pulsed electrochemical or suppressed conductivity detector. These protocols were successfully applied to a glucose pulse to carbon-limited yeast cultures on purines metabolism. This study showed that glucose induced a fast activation of the purine salvage pathway, as indicated by a transient drop of ATP and ADP with a concomitant rise of IMP and inosine. This metabolic perturbation was accompanied by a rapid increase in the activity of the ISN1-encoded specific IMP-5'-nucleotidase. The mechanism of this activation remains to be determined. Topics: Adenine Nucleotides; Analytic Sample Preparation Methods; Fructosephosphates; Fumarates; Glucose; Glucose-6-Phosphate; Glucosephosphates; Inosine; Inosine Monophosphate; Pyruvic Acid; Saccharomyces cerevisiae; Sugar Phosphates; Trehalose | 2007 |