fumarates has been researched along with gluconic-acid* in 6 studies
1 trial(s) available for fumarates and gluconic-acid
Article | Year |
---|---|
Double-blind, placebo-controlled trial comparing effects of supplementation of two micronutrient sprinkles on fatty acid status in Cambodian infants.
Infants in developing countries require early dietary interventions to prevent nutritional deficiencies, above all protein, energy, iron and zinc. To what extent these interventions may affect the fatty acid (FA) status is still unknown.. To examine and compare the effects of 2 micronutrient "sprinkles" supplementations (iron 12.5 mg + folic acid 150 microg, iron/folate and iron 12.5 mg + folic acid 150 microg + zinc 5 mg + vitamins A, C and D3, mineral/micronutrient [MMN]) versus placebo on the FA status of Cambodian infants.. A total of 204 infants age 6 mo and living in Kompong Chhnang Province, Cambodia, were randomly assigned to receive daily supplementation of MMN (n = 68) and iron/folate (n = 68) or placebo (n = 68) for a 12-mo period in powder form as sprinkles. At the end of the intervention period, FAs in the range of 16 to 24 C were determined in blood drops absorbed on a strip collected from 182 subjects, and values among the 3 intervention subgroups and those of 21 Italian 18-mo-old, normal-growing infants as the reference group were compared.. At the end of the supplementation trial, higher levels of the 2 essential FAs (EFAs) (linoleic acid, 18:2n-6, and alpha-linolenic acid, 18:3n-3) were found in the MMN group. No differences occurred for the major longer chain derivatives of both EFAs arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3). In MMN supplemented Cambodians, blood levels of linoleic acid approached those of Italian infants, and in addition their alpha-linolenic acid levels were improved. Cambodian infants, mostly still breast-fed through the second year of life, showed significantly higher levels of long-chain derivatives of both the n-6 and the n-3 series compared with Italians.. Supplementation with iron, folic acid, zinc and vitamins was associated with an increase of linoleic acid and alpha-linolenic acid levels in Cambodian infants versus placebo, without significant changes in the concentrations of their longer chain derivatives, resulting in a FA status closer to Italian counterparts for the essential polyunsaturated FA levels. The iron/folate-treated infants showed no differences compared with the other 2 groups. Studies are needed to differentiate the potential effects of the supplemented micronutrients on the FA status. Topics: alpha-Linolenic Acid; Anemia, Iron-Deficiency; Ascorbic Acid; Cambodia; Child Development; Cholecalciferol; Dietary Supplements; Double-Blind Method; Female; Folic Acid; Fumarates; Gluconates; Humans; Infant; Iron Compounds; Italy; Linoleic Acid; Longitudinal Studies; Male; Micronutrients; Polysaccharides; Vitamin A | 2007 |
5 other study(ies) available for fumarates and gluconic-acid
Article | Year |
---|---|
The Usefulness of X-ray Diffraction and Thermal Analysis to Study Dietary Supplements Containing Iron.
X-ray powder diffraction (XRPD) and thermal analysis (differential scanning calorimetry/derivative of thermogravimetry (DSC/DTG)) are solid-state techniques that can be successfully used to identify and quantify various chemical compounds in polycrystalline mixtures, such as dietary supplements or drugs. In this work, 31 dietary supplements available on the Polish market that contain iron compounds, namely iron gluconate, fumarate, bisglycinate, citrate and pyrophosphate, were evaluated. The aim of the work was to identify iron compounds declared by the manufacturer as food supplements and to try to verify compliance with the manufacturer's claims. Studies performed by X-ray and thermal analysis confirmed that crystalline iron compounds (iron (II) gluconate, iron (II) fumarate), declared by the manufacturers, were present in the investigated dietary supplements. Iron (II) bisglycinate proved to be semi-crystalline. However, depending on the composition of the formulation, it was possible to identify this compound in the tested supplements. For amorphous iron compounds (iron (III) citrate and iron (III) pyrophosphate), the diffraction pattern does not have characteristic diffraction lines. Food supplements containing crystalline iron compounds have a melting point close to the melting point of pure iron compounds. The presence of excipients was found to affect the shapes and positions of the endothermic peaks significantly. Widening of endothermic peaks and changes in their position were observed, as well as exothermic peaks indicating crystallization of amorphous compounds. Weight loss was determined for all dietary supplements tested. Analysis of the DTG curves showed that the thermal decomposition of most food supplements takes place in several steps. The results obtained by a combination of both simple, relatively fast and reliable XRPD and DSC/DTG methods are helpful in determining phase composition, pharmaceutical abnormalities or by detecting the presence of the correct polymorphic form. Topics: Calorimetry, Differential Scanning; Dietary Supplements; Diphosphates; Fumarates; Gluconates; Iron; Thermogravimetry; X-Ray Diffraction | 2021 |
The effects of various organic acids on phytate phosphorus utilization in chicks.
Previous research from our laboratory has shown that citric acid improves phytate P utilization in chicks fed a P-deficient corn-soybean meal diet. The current study was conducted to determine if other organic acids also are effective, with an emphasis on gluconic acid. Four experiments were conducted in which 4 replicate groups of 5 crossbred chicks (New Hampshire x Columbian) were fed a P-deficient diet (0.16% nonphyate P) from 8 to 22 d of age. In Experiment 1, chick weight gain and tibia ash were significantly increased (P < 0.05) by 1.5 and 3% sodium gluconate (NaGlu), 1.5% calcium gluconate (CaGlu), 1.5 and 3% glucono-delta-lactone, and 1% 2-hydroxy-4-methylthio butanoic acid (Alimet). In experiment 2, tibia ash was significantly increased (P < 0.05) by 2% NaGlu, CaGlu, and citric acid in chicks fed the P-deficient diet but not in chicks fed a 0.45% nonphytate P diet, indicating that the organic acid responses were due to increased P utilization. In experiments 3 and 4, tibia ash was significantly increased by 3% NaGlu and 3% citric acid, but not by 3% fumaric acid or 0.025, 0.05 and 0.1% EDTA. The results of this study showed that NaGlu, CaGlu, glucono-delta-lactone, Alimet, and citric acid, but not fumaric acid or EDTA, improved phytate P utilization in chicks fed a corn-soybean meal diet. Topics: Animals; Biological Availability; Bone and Bones; Calcium Gluconate; Carboxylic Acids; Chickens; Citric Acid; Crosses, Genetic; Diet; Eating; Edetic Acid; Female; Fumarates; Gluconates; Glycine max; Male; Methionine; Phosphorus; Phytic Acid; Weight Gain; Zea mays | 2005 |
Comparison of penetration rates of magnesium through the rat ileum for selected organic salts.
Topics: Animals; Anticarcinogenic Agents; Fumarates; Gluconates; Ileum; In Vitro Techniques; Intestinal Absorption; Magnesium; Magnesium Chloride; Magnesium Compounds; Male; Rats; Rats, Wistar | 2001 |
FUMARATE REDUCTION AND ITS ROLE IN THE DIVERSION OF GLUCOSE FERMENTATION BY STREPTOCOCCUS FAECALIS.
Deibel, R. H. (American Meat Institute Foundation, Chicago, Ill.), and M. J. Kvetkas. Fumarate reduction and its role in the diversion of glucose fermentation by Streptococcus faecalis. J. Bacteriol. 88:858-864. 1964.-Fumarate diverts the normal fermentation of glucose by Streptococcus faecalis FB82, as shown by the production of increased amounts of CO(2), formate, acetate, and acetoin, and decreased formation of lactate and ethanol. Experiments with d-glucose-1-C(14), in which low levels of labeled CO(2) were recovered, indicated that C-1 cleavage of the glucose molecule was not involved. The presence of fumarate afforded consistently larger cell crops in growth studies with glucose and other energy sources. On a molar growth-yield basis, anaerobically grown, glucose-fumarate cultures were equivalent to aerobically grown, glucose cultures. The reduction of fumarate by cell suspensions indicated that glucose, gluconate, and, to a lesser extent, glycerol and mannitol could serve as hydrogen donors. Several common metabolic inhibitors had no effect upon the fumarate reductase system in cell suspensions, although some sensitivity to acidic pH was noted. Significant levels of succinate oxidation activity were not detected. Fumarate reductase activity was demonstrated in all five S. faecalis strains tested. Distribution of this ability in S. faecium strains was variable, ranging from activity comparable with that of S. faecalis to total inactivity. The observations support the conclusion that fumarate functions as an alternate hydrogen acceptor, thus allowing pyruvate to participate in the energy-yielding phosphoroclastic and dismutation pathways. Topics: Acetates; Carbohydrate Metabolism; Enterococcus faecalis; Ethanol; Fermentation; Formates; Fumarates; Gluconates; Glucose; Glycerol; Hydrogen; Lactates; Mannitol; Oxidation-Reduction; Oxidoreductases; Pyruvates; Pyruvic Acid; Research; Succinates | 1964 |
PHYSIOLOGY OF THE ENTEROCOCCI AS RELATED TO THEIR TAXONOMY.
Deibel, R. H. (American Meat Institute Foundation, Chicago, Ill.), Donald E. Lake, and C. F. Niven, Jr. Physiology of the enterococci as related to their taxonomy. J. Bacteriol. 86:1275-1282. 1963-Studies on a collection of enterococci isolated from diverse sources have confirmed the existence of two distinct species, namely, Streptococcus faecalis and Streptococcus faecium. In contrast with S. faecium, S. faecalis characteristically ferments melezitose, sorbitol, glycerol (anaerobically), citrate, and gluconate; fails to ferment arabinose and melibiose; has strong reducing capacities as demonstrated by prompt reduction of litmus in milk or tetrazolium in an agar medium; initiates growth on an agar medium containing 0.04% potassium tellurite; does not require folic acid for growth; and does not produce strong greening in blood agar. S. liquefaciens and S. zymogenes differ from S. faecalis only in their proteolytic capacities and, therefore, deserve only varietal status. Some S. faecalis and S. faecium strains are proteolytic when tested on agar media. S. durans differs from S. faecium only in its inability to ferment arabinose and mannitol, and the failure of most strains to ferment sucrose. Therefore, it should be considered as a variety of S. faecium. It is recommended that the term "enterococcus" be used only when referring to S. faecalis and S. faecium, and their respective varieties. Topics: Arabinose; Carbohydrate Metabolism; Citrates; Classification; Culture Media; Enterococcus; Enterococcus faecalis; Enterococcus faecium; Fermentation; Folic Acid; Fumarates; Gelatin; Gluconates; Glucose; Glycerol; Mannitol; Metabolism; Research; Streptococcus | 1963 |