fumarates and ferric-citrate

fumarates has been researched along with ferric-citrate* in 11 studies

Other Studies

11 other study(ies) available for fumarates and ferric-citrate

ArticleYear
Methylome and Metabolome Analyses Reveal Adaptive Mechanisms in Geobacter sulfurreducens Grown on Different Terminal Electron Acceptors.
    Journal of proteome research, 2019, 04-05, Volume: 18, Issue:4

    The Geobacter species evolved respiratory versatility to utilize a wide range of terminal electron acceptors. To explore this adaptive mechanism, Fe(III) citrate, hydrous ferric oxide, and fumarate were selected as electron acceptors, and the methylome and metabolome of Geobacter sulfurreducens PCA grown on each electron acceptor were investigated via third-generation, single-molecule real-time DNA sequencing and gas chromatography/time-of-flight mass spectrometry-based metabolomics, respectively. Results showed that the patterns of 4-methylcytosine (m4C) and 6-methyladenine (m6A) modification, the concentrations of fatty acids (e.g., caprylic acid, capric acid, and squalene), and the activity of antioxidant enzymes (e.g., superoxide dismutase, catalase, and glutathione reductase) were all varied in different electron acceptor cultures. Moreover, genes (e.g., GSU0466 and GSU1467) with low expression levels generally had high methylation levels. These findings suggest that m4C and m6A modifications, fatty acids, and antioxidant enzymes all play a role in the adaptation of G. sulfurreducens to diverse electron acceptors, and DNA methylation may be involved in the adaptation mainly via gene expression regulation.

    Topics: Adaptation, Biological; DNA Methylation; Electron Transport; Ferric Compounds; Fumarates; Gene Expression; Geobacter; Metabolome; Metabolomics

2019
Characterization of a Novel Porin-Like Protein, ExtI, from Geobacter sulfurreducens and Its Implication in the Reduction of Selenite and Tellurite.
    International journal of molecular sciences, 2018, Mar-11, Volume: 19, Issue:3

    The

    Topics: Bacterial Proteins; Ferric Compounds; Fumarates; Geobacter; Oxidation-Reduction; Porins; Selenious Acid; Tellurium

2018
A severe reduction in the cytochrome C content of Geobacter sulfurreducens eliminates its capacity for extracellular electron transfer.
    Environmental microbiology reports, 2015, Volume: 7, Issue:2

    The ability of Geobacter species to transfer electrons outside the cell enables them to play an important role in a number of biogeochemical and bioenergy processes. Gene deletion studies have implicated periplasmic and outer-surface c-type cytochromes in this extracellular electron transfer. However, even when as many as five c-type cytochrome genes have been deleted, some capacity for extracellular electron transfer remains. In order to evaluate the role of c-type cytochromes in extracellular electron transfer, Geobacter sulfurreducens was grown in a low-iron medium that included the iron chelator (2,2'-bipyridine) to further sequester iron. Haem-staining revealed that the cytochrome content of cells grown in this manner was 15-fold lower than in cells exposed to a standard iron-containing medium. The low cytochrome abundance was confirmed by in situ nanoparticle-enhanced Raman spectroscopy (NERS). The cytochrome-depleted cells reduced fumarate to succinate as well as the cytochrome-replete cells do, but were unable to reduce Fe(III) citrate or to exchange electrons with a graphite electrode. These results demonstrate that c-type cytochromes are essential for extracellular electron transfer by G. sulfurreducens. The strategy for growing cytochrome-depleted G. sulfurreducens will also greatly aid future physiological studies of Geobacter species and other microorganisms capable of extracellular electron transfer.

    Topics: Culture Media; Cytochromes c; Electrodes; Electron Transport; Ferric Compounds; Fumarates; Geobacter; Graphite; Oxidation-Reduction; Spectrum Analysis, Raman; Staining and Labeling; Succinic Acid

2015
Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation.
    Bioelectrochemistry (Amsterdam, Netherlands), 2015, Volume: 106, Issue:Pt A

    Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD(+), respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP(+), respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190 mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

    Topics: Adenine Nucleotides; Adenosine Monophosphate; Biofilms; Electrodes; Electron Transport; Ferric Compounds; Fumarates; Geobacter; NADP; Phosphorylation

2015
Comprehensive proteome profiling of the Fe(III)-reducing myxobacterium Anaeromyxobacter dehalogenans 2CP-C during growth with fumarate and ferric citrate.
    Proteomics, 2010, Volume: 10, Issue:8

    Anaeromyxobacter dehalogenans is a microaerophilic member of the delta-proteobacteria which is able to utilize a wide range of electron acceptors, including halogenated phenols, U(VI), Fe(III), nitrate, nitrite, oxygen and fumarate. To date, the knowledge regarding general metabolic activities of this ecologically relevant bacterium is limited. Here, we present a first systematic 2-D reference map of the soluble A. dehalogenans proteome in order to provide a sound basis for further proteomic studies as well as to gain first global insights into the metabolic activities of this bacterium. Using a combination of 2-DE and MALDI-TOF-MS, a total of 720 proteins spots were identified, representing 559 unique protein species. Using the proteome data, altogether 50 metabolic pathways were found to be expressed during growth with fumarate as primary electron acceptor. An analysis of the pathways revealed an extensive display of enzymes involved in the catabolism and anabolism of a variety of amino acids, including the unexpected fermentation of lysine to butyrate. Moreover, using the reference gel as basis, a semi-quantitative analysis of protein expression changes of A. dehalogenans during growth with ferric citrate as electron acceptor was conducted. The adaptation to Fe(III) reducing conditions involved the expression changes of a total of 239 proteins. The results suggest that the adaptation to Fe(III) reductive conditions involves an increase in metabolic flux through the tricarboxylic acid cycle, which is fueled by an increased catabolism of amino acids.

    Topics: Bacterial Proteins; Ferric Compounds; Fumarates; Myxococcales; Oxidation-Reduction; Proteome; Proteomics

2010
Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1.
    Applied and environmental microbiology, 2009, Volume: 75, Issue:24

    Dissimilatory microbial reduction of insoluble Fe(III) oxides is a geochemically and ecologically important process which involves the transfer of cellular, respiratory electrons from the cytoplasmic membrane to insoluble, extracellular, mineral-phase electron acceptors. In this paper evidence is provided for the function of the periplasmic fumarate reductase FccA and the decaheme c-type cytochrome MtrA in periplasmic electron transfer reactions in the gammaproteobacterium Shewanella oneidensis. Both proteins are abundant in the periplasm of ferric citrate-reducing S. oneidensis cells. In vitro fumarate reductase FccA and c-type cytochrome MtrA were reduced by the cytoplasmic membrane-bound protein CymA. Electron transfer between CymA and MtrA was 1.4-fold faster than the CymA-catalyzed reduction of FccA. Further experiments showing a bidirectional electron transfer between FccA and MtrA provided evidence for an electron transfer network in the periplasmic space of S. oneidensis. Hence, FccA could function in both the electron transport to fumarate and via MtrA to mineral-phase Fe(III). Growth experiments with a DeltafccA deletion mutant suggest a role of FccA as a transient electron storage protein.

    Topics: Bacterial Outer Membrane Proteins; Cytochrome c Group; Electron Transport; Escherichia coli; Ferric Compounds; Fumarates; Gene Expression Regulation, Bacterial; Oxidation-Reduction; Periplasm; Shewanella; Succinate Dehydrogenase

2009
Involvement of Geobacter sulfurreducens SfrAB in acetate metabolism rather than intracellular, respiration-linked Fe(III) citrate reduction.
    Microbiology (Reading, England), 2007, Volume: 153, Issue:Pt 10

    A soluble ferric reductase, SfrAB, which catalysed the NADPH-dependent reduction of chelated Fe(III), was previously purified from the dissimilatory Fe(III)-reducing micro-organism Geobacter sulfurreducens, suggesting that reduction of chelated forms of Fe(III) might be cytoplasmic. However, metabolically active spheroplast suspensions could not catalyse acetate-dependent Fe(III) citrate reduction, indicating that periplasmic and/or outer-membrane components were required for Fe(III) citrate reduction. Furthermore, phenotypic analysis of an SfrAB knockout mutant suggested that SfrAB was involved in acetate metabolism rather than respiration-linked Fe(III) reduction. The mutant could not grow via the reduction of either Fe(III) citrate or fumarate when acetate was the electron donor but could grow with either acceptor if either hydrogen or formate served as the electron donor. Following prolonged incubation in acetate : fumarate medium in the absence of hydrogen and formate, an 'acetate-adapted' SfrAB-null strain was isolated that was capable of growth on acetate : fumarate medium but not acetate : Fe(III) citrate medium. Comparison of gene expression in this strain with that of the wild-type revealed upregulation of a potential NADPH-dependent ferredoxin oxidoreductase as well as genes involved in energy generation and amino acid uptake, suggesting that NADPH homeostasis and the tricarboxylic acid (TCA) cycle were perturbed in the 'acetate-adapted' SfrAB-null strain. Membrane and soluble fractions prepared from the 'acetate-adapted' strain were depleted of NADPH-dependent Fe(III), viologen and quinone reductase activities. These results indicate that cytoplasmic, respiration-linked reduction of Fe(III) by SfrAB in vivo is unlikely and suggest that deleting SfrAB may interfere with growth via acetate oxidation by interfering with NADP regeneration.

    Topics: Acetates; Amino Acid Transport Systems; Bacterial Proteins; Cell Membrane; Citric Acid Cycle; Cytoplasm; Energy Metabolism; Ferric Compounds; Formates; Fumarates; Gene Deletion; Gene Expression Profiling; Geobacter; Hydrogen; NADH, NADPH Oxidoreductases; Oligonucleotide Array Sequence Analysis

2007
Differential protein expression in the metal-reducing bacterium Geobacter sulfurreducens strain PCA grown with fumarate or ferric citrate.
    Proteomics, 2006, Volume: 6, Issue:2

    Geobacter sulfurreducens, generally considered to be a strict anaerobe, is a predominant microbe in subsurface environments, where it utilizes available metals as electron acceptors. To better understand the metabolic processes involved in the metal-reduction capability of this microbe, the proteins expressed by cells grown anaerobically with either fumarate or ferric citrate as electron acceptor were compared. Proteins were separated by 2-DE under denaturing or nondenaturing conditions, and proteins varying in abundance with a high level of statistical significance (p<0.0001) were identified by peptide mass analysis. Denaturing 2-DE revealed significant differences in the relative abundance of the membrane proteins OmpA and peptidoglycan-associated lipoprotein, several metabolic enzymes, and, in addition, superoxide dismutase and rubredoxin oxidoreductase. Nondenaturing 2-DE revealed elevated catalase in cells grown with ferric citrate. These results suggest that, in addition to adjustments in membrane transport and specific metabolic pathways in response to these two different electron acceptors, distinct differences exist in the oxidative environment within the cell when fumarate or soluble ferric citrate is provided as electron acceptor. Although an anaerobe, G. sulfurreducens appears to have alternate mechanisms for dealing with reactive oxygen species in response to increased intracellular soluble iron.

    Topics: Anaerobiosis; Bacterial Proteins; Electrophoresis, Gel, Two-Dimensional; Ferric Compounds; Fumarates; Geobacter; Oxidation-Reduction; Proteomics; Reactive Oxygen Species; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

2006
The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions.
    Biochimica et biophysica acta, 2006, Volume: 1764, Issue:7

    The proteome of Geobacter sulfurreducens, a model for the Geobacter species that predominate in many Fe(III)-reducing subsurface environments, was characterized with ultra high-pressure liquid chromatography and mass spectrometry using accurate mass and time (AMT) tags as well as with more traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Cells were grown under six different growth conditions in order to enhance the potential that a wide range of genes would be expressed. The AMT tag approach was able to identify a much greater number of proteins than could be detected with the 2-D PAGE approach. With the AMT approach over 3,000 gene products were identified, representing about 90% of the total predicted gene products in the genome. A high proportion of predicted proteins in most protein role categories were detected; the highest number of proteins was identified in the hypothetical protein role category. Furthermore, 91 c-type cytochromes of 111 predicted genes in the G. sulfurreducens genome were identified. Differences in the abundance of cytochromes and other proteins under different growth conditions provided information for future functional analysis of these proteins. These results demonstrate that a high percentage of the predicted proteins in the G. sulfurreducens genome are produced and that the AMT tag approach provides a rapid method for comparing differential expression of proteins under different growth conditions in this organism.

    Topics: Bacterial Proteins; Bacteriological Techniques; Chromatography, High Pressure Liquid; Cytochrome c Group; Electrophoresis, Gel, Two-Dimensional; Ferric Compounds; Fumarates; Geobacter; Peptide Fragments; Proteome; Spectrometry, Mass, Electrospray Ionization

2006
Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture.
    Environmental microbiology, 2005, Volume: 7, Issue:5

    A system for growing Geobacter sulfurreducens under anaerobic conditions in chemostats was developed in order to study the physiology of this organism under conditions that might more closely approximate those found in the subsurface than batch cultures. Geobacter sulfurreducens could be cultured under acetate-limiting conditions with fumarate or Fe(III)-citrate as the electron acceptor at growth rates between 0.04 and 0.09 h(-1). The molar growth yield was threefold higher with fumarate as the electron acceptor than with Fe(III), despite the lower mid-point potential of the fumarate/succinate redox couple. When growth was limited by availability of fumarate, high steady-state concentrations were detected, suggesting that fumarate is unlikely to be an important electron acceptor in sedimentary environments. The half-saturation constant, Ks, for acetate in Fe(III)-grown cultures (10 microM) suggested that the growth of Geobacter species is likely to be acetate limited in most subsurface sediments, but that when millimolar quantities of acetate are added to the subsurface in order to promote the growth of Geobacter for bioremediation applications, this should be enough to overcome any acetate limitations. When the availability of electron acceptors, rather than acetate, limited growth, G. sulfurreducens was less efficient in incorporating acetate into biomass but had higher respiration rates, a desirable physiological characteristic when adding acetate to stimulate the activity of Geobacter species during in situ uranium bioremediation. These results demonstrate that the ability to study the growth of G. sulfurreducens under steady-state conditions can provide insights into its physiological characteristics that have relevance for its activity in a diversity of sedimentary environments.

    Topics: Acetates; Anaerobiosis; Biomass; Bioreactors; Ferric Compounds; Fumarates; Geobacter; Kinetics; Oxidation-Reduction

2005
Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant.
    Applied and environmental microbiology, 2004, Volume: 70, Issue:9

    The mechanisms underlying the use of insoluble electron acceptors by metal-reducing bacteria, such as Shewanella oneidensis MR-1, are currently under intensive study. Current models for shuttling electrons across the outer membrane (OM) of MR-1 include roles for OM cytochromes and the possible excretion of a redox shuttle. While MR-1 is able to release a substance that restores the ability of a menaquinone (MK)-negative mutant, CMA-1, to reduce the humic acid analog anthraquinone-2,6-disulfonate (AQDS), cross-feeding experiments conducted here showed that the substance released by MR-1 restores the growth of CMA-1 on several soluble electron acceptors. Various strains derived from MR-1 also release this substance; these include mutants lacking the OM cytochromes OmcA and OmcB and the OM protein MtrB. Even though strains lacking OmcB and MtrB cannot reduce Fe(III) or AQDS, they still release a substance that restores the ability of CMA-1 to use MK-dependent electron acceptors, including AQDS and Fe(III). Quinone analysis showed that this released substance restores MK synthesis in CMA-1. This ability to restore MK synthesis in CMA-1 explains the cross-feeding results and challenges the previous hypothesis that this substance represents a redox shuttle that facilitates metal respiration.

    Topics: Electron Transport; Ferric Compounds; Fumarates; Iron; Kinetics; Nitrates; Oxidation-Reduction; Shewanella; Vitamin K 2

2004