fumarates and diallyl-disulfide

fumarates has been researched along with diallyl-disulfide* in 2 studies

Trials

1 trial(s) available for fumarates and diallyl-disulfide

ArticleYear
Dietary inclusion of diallyl disulfide, yucca powder, calcium fumarate, an extruded linseed product, or medium-chain fatty acids does not affect methane production in lactating dairy cows.
    Journal of dairy science, 2011, Volume: 94, Issue:6

    Two similar experiments were conducted to assess the effect of diallyl disulfide (DADS), yucca powder (YP), calcium fumarate (CAFU), an extruded linseed product (UNSAT), or a mixture of capric and caprylic acid (MCFA) on methane production, energy balance, and dairy cow performance. In experiment 1, a control diet (CON1) and diets supplemented with 56 mg of DADS/kg of dry matter (DM), 3g of YP/kg of DM, or 25 g of CAFU/kg of DM were evaluated. In experiment 2, an inert saturated fat source in the control diet (CON2) was exchanged isolipidically for an extruded linseed source (100g/kg of DM; UNSAT) or a mixture of C8:0 and C10:0 (MCFA; 20.3g/kg of DM). In experiment 2, a higher inclusion level of DADS (200mg/kg of DM) was also tested. Both experiments were conducted using 40 lactating Holstein-Friesian dairy cows. Cows were adapted to the diet for 12 d and were subsequently kept in respiration chambers for 5 d to evaluate methane production, diet digestibility, energy balance, and animal performance. Feed intake was restricted to avoid confounding effects of possible differences in ad libitum feed intake on methane production. Feed intake was, on average, 17.5 and 16.6 kg of DM/d in experiments 1 and 2, respectively. None of the additives reduced methane production in vivo. Methane production in experiment 1 was 450, 453, 446, and 423 g/d for CON1 and the diets supplemented with DADS, YP, and CAFU, respectively. In experiment 2, methane production was 371, 394, 388, and 386 g/d for CON2 and the diets supplemented with UNSAT, MCFA, and DADS, respectively. No effects of the additives on energy balance or neutral detergent fiber digestibility were observed. The addition of MCFA increased milk fat content (5.38% vs. 4.82% for control) and fat digestibility (78.5% vs. 59.8% for control), but did not affect milk yield or other milk components. The other products did not affect milk yield or composition. Results from these experiments emphasize the need to confirm methane reductions observed in vitro with in vivo data.

    Topics: Allyl Compounds; Animal Nutritional Physiological Phenomena; Animals; Caprylates; Cattle; Decanoic Acids; Diet; Dietary Supplements; Digestion; Disulfides; Energy Metabolism; Female; Flax; Fumarates; Lactation; Methane; Milk; Yucca

2011

Other Studies

1 other study(ies) available for fumarates and diallyl-disulfide

ArticleYear
Phytochemical induction of cell cycle arrest by glutathione oxidation and reversal by N-acetylcysteine in human colon carcinoma cells.
    Nutrition and cancer, 2009, Volume: 61, Issue:3

    Cancer prevention by dietary phytochemicals has been shown to involve decreased cell proliferation and cell cycle arrest. However, there is limited understanding of the mechanisms involved. Previously, we have shown that a common effect of phytochemicals investigated is to oxidize the intracellular glutathione (GSH) pool. Therefore, the objective of this study was to evaluate whether changes in the glutathione redox potential in response to dietary phytochemicals was related to their induction of cell cycle arrest. Human colon carcinoma (HT29) cells were treated with benzyl isothiocyanate (BIT) (BIT), diallyl disulfide (DADS), dimethyl fumarate (DMF), lycopene (LYC) (LYC), sodium butyrate (NaB) or buthione sulfoxamine (BSO, a GSH synthesis inhibitor) at concentrations shown to cause oxidation of the GSH: glutathione disulfide pool. A decrease in cell proliferation, as measured by [(3)H]-thymidine incorporation, was observed that could be reversed by pretreatment with the GSH precursor and antioxidant N-acetylcysteine (NAC). Cell cycle analysis on cells isolated 16 h after treatment indicated an increase in the percentage (ranging from 75-30% for benzyl isothiocyanate and lycopene, respectively) of cells at G2/M arrest compared to control treatments (dimethylsulfoxide) in response to phytochemical concentrations that oxidized the GSH pool. Pretreatment for 6 h with N-acetylcysteine (NAC) resulted in a partial reversal of the G2/M arrest. As expected, the GSH oxidation from these phytochemical treatments was reversible by NAC. That both cell proliferation and G2/M arrest were also reversed by NAC leads to the conclusion that these phytochemical effects are also mediated, in part, by intracellular oxidation. Thus, one potential mechanism for cancer prevention by dietary phytochemicals is inhibition of the growth of cancer cells through modulation of their intracellular redox environment.

    Topics: Acetylcysteine; Allyl Compounds; Anticarcinogenic Agents; Butyrates; Carotenoids; Cell Cycle; Cell Proliferation; Dimethyl Fumarate; Disulfides; Fumarates; Glutathione; HT29 Cells; Humans; Isothiocyanates; Lycopene; Oxidation-Reduction; Plants

2009