fructooligosaccharide and dihydrodaidzein

fructooligosaccharide has been researched along with dihydrodaidzein* in 3 studies

Other Studies

3 other study(ies) available for fructooligosaccharide and dihydrodaidzein

ArticleYear
Red clover isoflavone metabolite bioavailability is decreased after fructooligosaccharide supplementation.
    Fitoterapia, 2015, Volume: 105

    Red clover is an important source of isoflavones; which has been made commercially available as dietary supplements for the treatment of menopausal symptoms. Bioavailability and metabolism of these red clover isoflavones (RCI) have not been studied in detail. Fructooligosaccharides (FOS) stimulate the growth of intestinal bacteria and play an important role in the formation of certain isoflavone metabolites, such as equol and O-desmethylangolensin.. To determine the bioavailability of RCI metabolites and analyse whether FOS supplementation could influence their bioavailability.. Seventeen healthy adults were enrolled in the study carried out in two periods. In the first, compound bioavailability was determined after consumption of 80 mg of RCI (MF11RCE). In the second, a 6-day supplementation of 2×3000 mg/day of FOS was administered before isoflavone consumption.. Biochanin A and formononetin were rapidly absorbed and both reached maximum concentrations at an average of 5-7h. Demethylation was a major reaction in the metabolic pathway. Daidzein serum level peaked after about 12.6h. Supplementation with FOS led to a significant decrease in the bioavailability of daidzein, dihydroformononetin, dihydrogenistein and dihydrodaidzein. An increase in equol production was also observed which did not reach statistical significance (p>0.05).. This study is the first to provide detailed data on RCI bioavailability in humans and determine no influence of FOS yet a trend toward increased equol production. More research is warranted involving a greater sample size.

    Topics: Adult; Biological Availability; Dietary Supplements; Equol; Female; Genistein; Humans; Isoflavones; Male; Oligosaccharides; Trifolium; Young Adult

2015
Supplementation of difructose anhydride III enhanced elevation of plasma equol concentrations and lowered plasma total cholesterol in isoflavone-fed rats.
    The British journal of nutrition, 2006, Volume: 96, Issue:3

    Equol, a derivative of daidzein produced by enterobacteria, has greater activity as a phyto-oestrogen compared with daidzein. Difructose anhydride III (DFAIII) is a newly manufactured non-digestible disaccharide with unique fermentation properties. The present study evaluated the prebiotic effects of DFAIII on equol production and on plasma cholesterol concentrations related to the changes in equol production. We compared plasma equol concentrations at 10.00 and 18.00 hours and faecal isoflavone excretion in three groups of seven rats (male Wistar-ST strain, 6 weeks old) fed a basal diet or a DFAIII or fructooligosaccharide (15 g/kg diet) diet containing 1 g soya isoflavones/kg diet for 20 d. Equol concentrations in the DFAIII group were higher than in the control and fructooligosaccharides groups, especially in the later phase of the light period (18.00 hours) throughout the experiment. Daizein and genistein concentrations did not change between the diet groups. The faecal ratios of equol:daidzein were very high in all groups, but the ratios were higher in the DFAIII group than the control and fructooligosaccharide groups on day 3, and this tendency continued throughout the experiment. On day 20, the plasma total cholesterol concentration was lowest in the DFAIII group. Additionally, the cholesterol concentrations were inversely correlated to plasma equol concentration in all the rats. In conclusion, DFAIII efficiently enhanced plasma equol concentrations, which may be associated with an increase in equol production and a decrease in equol degradation by enterobacteria. Higher plasma equol concentrations may contribute to the hypocholesterolaemic effect of DFAIII feeding.

    Topics: Animals; Body Weight; Cecum; Cholesterol; Diet; Dietary Supplements; Disaccharides; Equol; Feces; Genistein; Isoflavones; Male; Oligosaccharides; Phytoestrogens; Rats; Rats, Wistar

2006
Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions.
    Archives of microbiology, 2005, Volume: 183, Issue:1

    Only about one third of humans possess a microbiota capable of transforming the dietary isoflavone daidzein into equol. Little is known about the dietary and physiological factors determining this ecological feature. In this study, the in vitro metabolism of daidzein by faecal samples from four human individuals was investigated. One culture produced the metabolites dihydrodaidzein and O-desmethylangolensin, another produced dihydrodaidzein and equol. From the latter, a stable and transferable mixed culture transforming daidzein into equol was obtained. Molecular fingerprinting analysis (denaturing gradient gel electrophoresis) showed the presence of four bacterial species of which only the first three strains could be brought into pure culture. These strains were identified as Lactobacillus mucosae EPI2, Enterococcus faecium EPI1 and Finegoldia magna EPI3, and did not produce equol in pure culture. The fourth species was tentatively identified as Veillonella sp strain EP. It was found that hydrogen gas in particular, but also butyrate and propionate, which are all colonic fermentation products from poorly digestible carbohydrates, stimulated equol production by the mixed culture. However, when fructo-oligosaccharides were added, equol production was inhibited. Furthermore, the equol-producing capacity of the isolated culture was maintained upon its addition to a faecal culture originating from a non-equol-producing individual.

    Topics: Bacteria; Butyrates; DNA Fingerprinting; DNA, Bacterial; DNA, Ribosomal; Enterococcus faecium; Equol; Feces; Genes, rRNA; Humans; Hydrogen; Isoflavones; Lactobacillus; Molecular Sequence Data; Oligosaccharides; Phylogeny; Propionates; RNA, Bacterial; RNA, Ribosomal, 16S; Sequence Analysis, DNA; Veillonella

2005