fluvoxamine and norfluoxetine

fluvoxamine has been researched along with norfluoxetine* in 3 studies

Other Studies

3 other study(ies) available for fluvoxamine and norfluoxetine

ArticleYear
CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants.
    Drug metabolism and disposition: the biological fate of chemicals, 2000, Volume: 28, Issue:10

    The in vitro biotransformation of bupropion to hydroxybupropion was studied in human liver microsomes and microsomes containing heterologously expressed human cytochromes P450 (CYP). The mean (+/-S.E.) K(m) in four human liver microsomes was 89 (+/-14) microM. In microsomes containing cDNA-expressed CYPs, hydroxybupropion formation was mediated only by CYP2B6 at 50 microM bupropion (K(m) 85 microM). A CYP2B6 inhibitory antibody produced more than 95% inhibition of bupropion hydroxylation in four human livers. Bupropion hydroxylation activity at 250 microM was highly correlated with S-mephenytoin N-demethylation activity (yielding nirvanol), another CYP2B6-mediated reaction, in a panel of 32 human livers (r = 0.94). The CYP2B6 content of 12 human livers highly correlated with bupropion hydroxylation activity (r = 0.96). Thus bupropion hydroxylation is mediated almost exclusively by CYP2B6 and can serve as an index reaction reflecting activity of this isoform. IC(50) values for inhibition of a CYP2D6 index reaction (dextromethorphan O-demethylation) by bupropion and hydroxybupropion were 58 and 74 microM, respectively. This suggests a low inhibitory potency versus CYP2D6, the clinical importance of which is not established. Since bupropion is frequently coadministered with other antidepressants, IC(50) values (microM) for inhibition of bupropion hydroxylation were determined as follows: paroxetine (1.6), fluvoxamine (6.1), sertraline (3.2), desmethylsertraline (19.9), fluoxetine (59.5), norfluoxetine (4.2), and nefazodone (25.4). Bupropion hydroxylation was only weakly inhibited by venlafaxine, O-desmethylvenlafaxine, citalopram, and desmethylcitalopram. The inhibition of bupropion hydroxylation in vitro by a number of newer antidepressants suggests the potential for clinical drug interactions.

    Topics: Antibodies; Antidepressive Agents, Second-Generation; Aryl Hydrocarbon Hydroxylases; Biotransformation; Bupropion; Chromatography, High Pressure Liquid; Cytochrome P-450 CYP2B6; Cytochrome P-450 Enzyme System; Dose-Response Relationship, Drug; Drug Interactions; Fluoxetine; Fluvoxamine; Humans; Hydroxylation; Isoenzymes; Kinetics; Microsomes, Liver; Oxidoreductases, N-Demethylating; Paroxetine; Piperazines; Sertraline; Triazoles

2000
The oxidative metabolism of metoprolol in human liver microsomes: inhibition by the selective serotonin reuptake inhibitors.
    European journal of clinical pharmacology, 1998, Volume: 54, Issue:3

    Biotransformation of metoprolol to alpha-hydroxymetoprolol (HM) and O-demethylmetoprolol (ODM) is mediated by CYP2D6. The selective serotonin reuptake inhibitors (SSRIs) are known to inhibit CYP2D6. The aim was to study in vitro the potential inhibitory effect of SSRIs on metoprolol biotransformation.. Using microsomes from two human livers, biotransformation of metoprolol to alpha-hydroxymetoprolol (HM) and O-demethylmetoprolol (ODM) as a function of the concentrations of the SSRIs and of some of their metabolites was studied.. The kinetics of the formation of both metabolites are best described by a biphasic enzyme model. The estimated values of Vmax and kM for the high affinity site are for the alpha-hydroxylation in human liver HL-1 32 pmol mg(-1) min(-1) and 75 micromol x l(-1) respectively, and in human liver HL-9 39 pmol mg(-1) x min(-1) and 70 micromol x l(-1) respectively; for the O-demethylation in HL-1 131 pmol mg(-1) min(-1) and 95 micromol x l(-1) respectively, and in HL-9 145 pmol mg(-1) min(-1) and 94 micromol x l(-1) respectively. Quinidine is for both pathways a potent inhibitor of the high-affinity site, with K(i) values ranging from 0.03 to 0.18 micromol x l(-1). Fluoxetine, norfluoxetine and paroxetine are likewise potent inhibitors, with Ki values ranging from 0.30 to 2.1 micromol x l(-1) fluvoxamine, sertraline, desmethylsertraline, citalopram and desmethylcitalopram are less potent inhibitors, with K(i) values above 10 micromol x l(-1).. The rank order of the SSRIs for inhibition of metoprolol metabolism is comparable to that reported in the literature for other CYP2D6 substrates, with fluoxetine, norfluoxetine and paroxetine being the most potent. These findings need further investigation to determine their clinical relevance.

    Topics: 1-Naphthylamine; Adult; Anti-Arrhythmia Agents; Child; Citalopram; Cytochrome P-450 CYP2D6; Cytochrome P-450 CYP2D6 Inhibitors; Fluoxetine; Fluvoxamine; Humans; Hydroxylation; Kinetics; Male; Methylation; Metoprolol; Microsomes, Liver; Oxidation-Reduction; Paroxetine; Quinidine; Selective Serotonin Reuptake Inhibitors; Sertraline

1998
Simultaneous determination of plasma levels of fluvoxamine and of the enantiomers of fluoxetine and norfluoxetine by gas chromatography-mass spectrometry.
    Journal of chromatography. B, Biomedical applications, 1996, Jul-12, Volume: 682, Issue:2

    A gas chromatographic-mass spectrometric method is presented which allows the simultaneous determination of the plasma concentrations of fluvoxamine and of the enantiomers of fluoxetine and norfluoxetine after derivatization with the chiral reagent, (S)-(-)-N-trifluoroacetylprolyl chloride. No interference was observed from endogenous compounds following the extraction of plasma samples from six different human subjects. The standard curves were linear over a working range of 10 to 750 ng/ml for racemic fluoxetine and norfluoxetine and of 50 to 500 ng/ml for fluvoxamine. Recoveries ranged from 50 to 66% for the three compounds. Intra- and inter-day coefficients of variation ranged from 4 to 10% for fluvoxamine and from 4 to 13% for fluoxetine and norfluoxetine. The limits of quantitation of the method were found to be 2 ng/ml for fluvoxamine and 1 ng/ml for the (R)- and (S)-enantiomers of fluoxetine and norfluoxetine, hence allowing its use for single dose pharmacokinetics. Finally, by using a steeper gradient of temperature, much shorter analysis times are obtained if one is interested in the concentrations of fluvoxamine alone.

    Topics: Fluoxetine; Fluvoxamine; Gas Chromatography-Mass Spectrometry; Humans; Reproducibility of Results; Sensitivity and Specificity; Stereoisomerism

1996