fluvoxamine has been researched along with cianopramine* in 3 studies
1 review(s) available for fluvoxamine and cianopramine
Article | Year |
---|---|
Therapeutic effects of serotonin uptake inhibitors in depression.
Depression has been associated with a disturbance in serotonin function as reflected in platelet uptake of the transmitter as well as in CSF levels of its major metabolite, 5-hydroxyindoleacetic acid (5-HIAA). CSF 5-HIAA levels are subnormal in approximately 30% of melancholia patients. Early studies suggested that patients with a disturbed serotonin metabolism were less responsive to treatment with uptake inhibitors with a preferential action on noradrenaline neurons. Such findings encouraged the search for compounds with a selective effect on serotonin neurons. Although some classical antidepressants are potent inhibitors of serotonin uptake, they are not selective, since their metabolites, which appear to have antidepressant effects, inhibit noradrenaline uptake. The consistent findings of an increased risk for suicide in patients with low CSF 5-HIAA underlines the importance of exploring drugs that act on serotonin transmission. The biochemical effects of some serotonin uptake inhibitors and their clinical and research potential in depression are reviewed. Topics: 5-Hydroxytryptophan; Alanine; Citalopram; Depressive Disorder; Fluoxetine; Fluvoxamine; Humans; Imipramine; Oximes; Paroxetine; Piperidines; Propylamines; Serotonin; Serotonin Antagonists; Trazodone; Zimeldine | 1986 |
2 other study(ies) available for fluvoxamine and cianopramine
Article | Year |
---|---|
Serotonin transporter function, but not expression, is dependent on brain-derived neurotrophic factor (BDNF): in vivo studies in BDNF-deficient mice.
In the present study, we used high-speed chronoamperometry to examine serotonin (5-HT) transporter (5-HTT) function in vivo in 2-, 5-, and 10-month-old brain-derived neurotrophic factor (BDNF)+/- mice. The rate of clearance of exogenously applied 5-HT was measured in CA3 region of hippocampus. In 2-month-old mice, the rate of 5-HT clearance did not differ between BDNF+/+ and BDNF+/- mice. In BDNF+/+ mice, 5-HT clearance rate (Tc) increased markedly with age. In contrast, Tc remained relatively static in BDNF+/- mice across 2-, 5-, and 10-month age groups. At 5 months of age, female BDNF+/+ mice had a lower maximal velocity (Vmax) for 5-HT clearance than male BDNF+/+ mice. There was a similar trend in 5-month-old BDNF+/- mice, but this did not reach statistical significance. There was an age-dependent increase in KT value for 5-HT clearance (i.e., decreased in vivo affinity of 5-HTT), but no significant effect of genotype or gender. 5-HTT density, as measured by [3H]cyanoimipramine binding, was not different between BDNF+/+ and BDNF+/- mice, although there was a significant increase in 5-HTT binding with age. The selective 5-HT reuptake inhibitor fluvoxamine (50 and 100 pmol) significantly decreased 5-HT clearance in BDNF+/+ mice, but not in BDNF+/- mice. Our data suggest that the profoundly reduced ability of 5- and 10-month-old BDNF+/- mice to clear 5-HT is not because of a decrease in the total number of 5-HTTs, but may be due to functional deficits in the 5-HTT, e.g., in the machinery/signaling required for insertion of 5-HTTs into the plasma membrane and/or activation of the 5-HTT once it is positioned to take up 5-HT from extracellular fluid. Topics: Age Factors; Animals; Autoradiography; Brain-Derived Neurotrophic Factor; Dose-Response Relationship, Drug; Electrochemistry; Female; Fluvoxamine; Gene Expression; Hippocampus; Imipramine; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Protein Binding; Selective Serotonin Reuptake Inhibitors; Serotonin; Serotonin Plasma Membrane Transport Proteins; Sex Factors | 2007 |
Antidepressants and serotonin neurons of the raphe.
Reserpine + nialamid administration to the rat induces a strong yellow fluorescence of the neuronal bodies of the raphe, due to serotonin (5-HT) accumulation. Under these conditions, administration of clomipramine (an antidepressant drug acting preferentially on 5-HT-mediated neurons) induces a decrease of intraneuronal fluorescence and its interneuronal diffusion. On this pattern we administered new antidepressant drugs which act on 5-HT neurons in a much more intensive way than clomipramine (fluvoxamine, clovoxamine, LM 5008, citalopram, Ro 11-2465). To varying degrees, we observed in the raphe, in addition to a decrease in intraneuronal fluorescence and interneuronal diffusion, the presence of a yellow fluorescence in capillary walls. It seems that under these antidepressants, 5-HT, which is outside neuronal bodies because of uptake blockade, is partly caught by the capillary walls. In these walls rich in monoamine oxydase, 5-HT would be catabolized, 5HIAA dispersed in the blood and thus, this 'capillary effect' could correspond to a loss of 5-HT in the raphe. Antidepressant drugs preferentially acting upon noradrenaline (NA) neurons do not, in this model, induce analogous phenomena in NA cell bodies of the locus coeruleus. So the 'capillary effect' differentiates antidepressant drugs acting specifically on 5-HT or NA neurons. It may be considered together with other parameters which also indicate asymmetries on the modes of action of antidepressant drugs, such as effects on monoamine turnover (increase for NA and decrease for 5-HT) and on receptor sensitivity (decrease for NA and increase for 5-HT). Topics: Animals; Antidepressive Agents, Tricyclic; Benzofurans; Brain Stem; Citalopram; Clomipramine; Ethers; Fluvoxamine; Imipramine; Indoles; Locus Coeruleus; Male; Microscopy, Fluorescence; Norepinephrine; Oximes; Piperidines; Propylamines; Raphe Nuclei; Rats; Receptors, Serotonin; Serotonin | 1981 |