fluticasone and hecogenin

fluticasone has been researched along with hecogenin* in 2 studies

Other Studies

2 other study(ies) available for fluticasone and hecogenin

ArticleYear
Hecogenin and fluticasone combination attenuates TNBS-induced ulcerative colitis in rats via downregulation of pro-inflammatory mediators and oxidative stress.
    Immunopharmacology and immunotoxicology, 2021, Volume: 43, Issue:2

    Ulcerative colitis is common types of severe, progressive, idiopathic inflammatory bowel disease that involves the mucosal lining of the large intestine. The purpose of the study is to explore the effects of hecogenin in TNBS (2, 4, 6- trinitrobenzene sulfonic acid) induced ulcerative colitis model in rats.. Thirty Wistar rats were randomized into five groups: (i) Normal Control (NC), (ii) Disease Control (DC), (iii) Hecogenin (HG) (50 µg/rat), (iv) Fluticasone (FC) (50 µg/rat), (v) Hecogenin + Fluticasone (HG + FC) combination (25 µg/rat). Colitis was induced by trans-rectal administration of TNBS using a catheter inserted 8 cm into the rectal portion of the rat. Colitis was evaluated by an independent observer who was blinded to the treatment. All treatment group results were compared to the TNBS group results.. The study results revealed that treatment of rats with HG and HG + FC significantly improved the body weight and colon length whereas; decreased the spleen weight, colon weight/length ratio, macroscopic lesions score, diarrhea score and adhesion score. The drug treatment in rats substantially decreased the development of inflammatory cytokines, levels of serum immunoglobulin E, colonic nitric oxide contents and restoration of antioxidant stress markers. Histopathological colon sample study significantly reduced colonic inflammation with a substantial decrease in inflammation score.. Thus, HG and HG + FC combination could change the pathogenesis of the disease and may be a potential therapeutic target for the treatment of ulcerative colitis by a reduction in dose in conjunction with FC to prevent the persistent adverse effects associated with FC.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Colitis, Ulcerative; Down-Regulation; Drug Therapy, Combination; Female; Fluticasone; Inflammation Mediators; Male; Mice; Oxidative Stress; Rats; Rats, Wistar; Sapogenins; Trinitrobenzenesulfonic Acid

2021
Anti-Inflammatory Potential of Hecogenin in Experimental Animals: Possible Involvement of Inflammatory Cytokines and Myeloperoxidase.
    Drug research, 2016, Volume: 66, Issue:12

    Hecogenin is a steroidal sapogenin plays important role in treatment of variety of inflammatory diseases. We have investigated the anti-inflammatory effects of Hecogenin (50 µg/animal) (HG), Fluticasone (50 µg/animal) (FC) and Hecogenin+Fluticasone (HG+FC) combination (25 µg/animal, each) on various inflammatory models. The anti-inflammatory effect of HG, FC and HG+FC combination was studied on % inhibition of dry weight of granuloma tissue, Δ ear weight, myeloperoxidase assay, serum pro-inflammatory cytokines, colon weight to length ratio, macroscopic lesions, adhesion score, diarrhoea score and histopathological analysis of ear and colon tissue on Cotton pellets induced granuloma in rats, Croton oil induced ear edema in mice and TNBS induced granuloma in rats. Topical administration of HG and its combination with FC showed significant decrease (p<0.001) in the % inhibition of dry weight of granuloma tissue, Δ ear weight, myeloperoxidase level, serum pro-inflammatory cytokines levels, colon weigh to length ratio as compared with Cotton pellets treated with acetone groups and Croton oil treated animals. Further histopathological analysis of ear tissue showed significant decrease in dermal thickness and epidermal hyperplasia and colon tissue showed reduction of edema, infiltration of inflammatory cells and normalization of crypt structure compared to DC animals. Thus, the findings of present study suggest the possible role of HG in the treatment of inflammation by reducing the dose of FC in combination with HG.

    Topics: Animals; Anti-Inflammatory Agents; Body Weight; Colon; Cytokines; Disease Models, Animal; Fluticasone; Inflammation; Mice; Peroxidase; Rats; Rats, Wistar; Sapogenins

2016