flutamide has been researched along with cyclobenzaprine in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (16.67) | 29.6817 |
2010's | 3 (50.00) | 24.3611 |
2020's | 2 (33.33) | 2.80 |
Authors | Studies |
---|---|
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Bender, A; Czobor, P; Jelinek, B; Málnási-Csizmadia, A; Peragovics, Á; Simon, Z; Tombor, L; Végner, L | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Mirsafaei, R; Mirsattari, SN; Varshosaz, J | 1 |
Mirsafaei, R; Varshosaz, J | 1 |
1 review(s) available for flutamide and cyclobenzaprine
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
5 other study(ies) available for flutamide and cyclobenzaprine
Article | Year |
---|---|
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
Experimental confirmation of new drug-target interactions predicted by Drug Profile Matching.
Topics: Algorithms; Angiotensin-Converting Enzyme Inhibitors; Animals; CHO Cells; Cricetulus; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase Inhibitors; Dopamine D2 Receptor Antagonists; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Humans; Molecular Conformation; Molecular Targeted Therapy; Peptidyl-Dipeptidase A; Receptors, Dopamine D1; Receptors, Dopamine D2; Structure-Activity Relationship; Substrate Specificity | 2013 |
Folate-Targeted Polyacrylamide/Punicic Acid Nanomicelles for Flutamide Delivery in Prostate Cancer: Characterization, In Vitro Biological Evaluation, and its DFT Study.
Topics: Acrylic Resins; Cell Death; Cell Line, Tumor; Density Functional Theory; Drug Delivery Systems; Fluorescence; Flutamide; Folic Acid; Humans; Linolenic Acids; Male; Micelles; Molecular Conformation; Nanoparticles; Particle Size; Prostatic Neoplasms; Proton Magnetic Resonance Spectroscopy; Spectroscopy, Fourier Transform Infrared | 2020 |
Polyacrylamide-punicic acid conjugate-based micelles for flutamide delivery in PC3 cells of prostate cancer: synthesis, characterisation and cytotoxicity studies.
Topics: Acrylic Resins; Antineoplastic Agents; Cell Survival; Drug Carriers; Flutamide; Humans; Linolenic Acids; Male; Micelles; PC-3 Cells; Prostatic Neoplasms | 2020 |