flutamide and acetaminophen

flutamide has been researched along with acetaminophen in 19 studies

Research

Studies (19)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's6 (31.58)29.6817
2010's13 (68.42)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM1
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
García-Mera, X; González-Díaz, H; Prado-Prado, FJ1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Glen, RC; Lowe, R; Mitchell, JB1
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ1
Ekins, S; Williams, AJ; Xu, JJ1
Honda, K; Izumi, T; Miyaji, Y; Nakayama, S; Okazaki, O; Okudaira, N; Shiosakai, K; Sugiyama, D; Suzuki, W; Takakusa, H; Watanabe, A1
Barber, J; Dawson, S; Kenna, JG; Paul, N; Stahl, S1
Ambroso, JL; Ayrton, AD; Baines, IA; Bloomer, JC; Chen, L; Clarke, SE; Ellens, HM; Harrell, AW; Lovatt, CA; Reese, MJ; Sakatis, MZ; Taylor, MA; Yang, EY1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Andersen, ME; Bogdanffy, MS; Bus, JS; Cohen, SD; Conolly, RB; David, RM; Doerrer, NG; Dorman, DC; Gaylor, DW; Hattis, D; Rogers, JM; Setzer, RW; Slikker, W; Swenberg, JA; Wallace, K1
Boyd, JG; Cole, MJ; Contillo, LG; Hop, CE; Kalgutkar, AS; Soglia, JR; Zhao, S1
Ellis, E; Kostrubsky, SE; Mutlib, AE; Nelson, SD; Strom, SC1
Athersuch, TJ; Bradshaw, PR; Butler, PJ; Dilworth, C; Gill, RU; Wilson, ID1

Reviews

2 review(s) available for flutamide and acetaminophen

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016
Dose-dependent transitions in mechanisms of toxicity: case studies.
    Toxicology and applied pharmacology, 2004, Dec-15, Volume: 201, Issue:3

    Topics: Acetaminophen; Analgesics, Non-Narcotic; Androgen Antagonists; Animals; Butadienes; Dichloroethylenes; Dose-Response Relationship, Drug; Drug-Related Side Effects and Adverse Reactions; Epoxy Compounds; Ethylene Glycol; Flutamide; Formaldehyde; Humans; Manganese; Manganese Poisoning; Methylene Chloride; Oxidation-Reduction; Peroxisome Proliferator-Activated Receptors; Progesterone; Vinyl Compounds; Zinc

2004

Other Studies

17 other study(ies) available for flutamide and acetaminophen

ArticleYear
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
    Journal of medicinal chemistry, 2008, Oct-09, Volume: 51, Issue:19

    Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship

2008
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
    Journal of medicinal chemistry, 2008, Nov-13, Volume: 51, Issue:21

    Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship

2008
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics

2010
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
Predicting phospholipidosis using machine learning.
    Molecular pharmaceutics, 2010, Oct-04, Volume: 7, Issue:5

    Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine

2010
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2010, Volume: 118, Issue:2

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
Combination of GSH trapping and time-dependent inhibition assays as a predictive method of drugs generating highly reactive metabolites.
    Drug metabolism and disposition: the biological fate of chemicals, 2011, Volume: 39, Issue:7

    Topics: Glutathione; Pharmacology; Sulfur Radioisotopes

2011
In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Cholestasis; Drug-Related Side Effects and Adverse Reactions; Humans; Insecta; Rats; Risk Factors

2012
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
    Chemical research in toxicology, 2012, Oct-15, Volume: 25, Issue:10

    Topics: Chemical and Drug Induced Liver Injury; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Decision Trees; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Glutathione; Humans; Liver; Pharmaceutical Preparations; Protein Binding

2012
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
A semiquantitative method for the determination of reactive metabolite conjugate levels in vitro utilizing liquid chromatography-tandem mass spectrometry and novel quaternary ammonium glutathione analogues.
    Chemical research in toxicology, 2006, Volume: 19, Issue:3

    Topics: Acetaminophen; Biotransformation; Chromatography, High Pressure Liquid; Clozapine; Female; Flutamide; Glutathione; Humans; In Vitro Techniques; Male; Mass Spectrometry; Microsomes, Liver; Peptides; Quaternary Ammonium Compounds; Spectrometry, Mass, Electrospray Ionization

2006
Transport, metabolism, and hepatotoxicity of flutamide, drug-drug interaction with acetaminophen involving phase I and phase II metabolites.
    Chemical research in toxicology, 2007, Volume: 20, Issue:10

    Topics: Acetaminophen; Analgesics, Non-Narcotic; Androgen Antagonists; Biological Transport; Cells, Cultured; Chromatography, High Pressure Liquid; Culture Media, Conditioned; Dose-Response Relationship, Drug; Drug Combinations; Drug Synergism; Flutamide; Hepatocytes; Humans; Metabolic Detoxication, Phase I; Metabolic Detoxication, Phase II; Microsomes, Liver; Spectrometry, Mass, Electrospray Ionization

2007
Metabolic Hydrolysis of Aromatic Amides in Selected Rat, Minipig, and Human In Vitro Systems.
    Scientific reports, 2018, 02-05, Volume: 8, Issue:1

    Topics: Acetaminophen; Acetanilides; Amides; Anilides; Animals; Carboxylesterase; Flutamide; Hepatocytes; Humans; Hydrolysis; Lidocaine; Male; Microsomes, Liver; Niclosamide; Nitriles; Prilocaine; Primary Cell Culture; Propanil; Rats; Rats, Sprague-Dawley; Subcellular Fractions; Swine; Swine, Miniature; Tosyl Compounds

2018