fluphenazine has been researched along with phenytoin in 14 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 5 (35.71) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (28.57) | 29.6817 |
2010's | 4 (28.57) | 24.3611 |
2020's | 1 (7.14) | 2.80 |
Authors | Studies |
---|---|
Creveling, CR; Daly, JW; Lewandowski, GA; McNeal, ET | 1 |
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Andricopulo, AD; Moda, TL; Montanari, CA | 1 |
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM | 1 |
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M | 1 |
García-Mera, X; González-Díaz, H; Prado-Prado, FJ | 1 |
Brouillette, WJ; Brown, GB; Zha, C | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M | 1 |
Varma, R | 1 |
Rodin, EA | 1 |
Baldwin, RL; Peters, JE | 1 |
Czuczwar, SJ; Kleinrok, Z; Kozicka, M | 1 |
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL | 1 |
1 review(s) available for fluphenazine and phenytoin
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
13 other study(ies) available for fluphenazine and phenytoin
Article | Year |
---|---|
[3H]Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs.
Topics: Adrenergic alpha-Antagonists; Adrenergic beta-Antagonists; Anesthetics, Local; Animals; Batrachotoxins; Calcium Channel Blockers; Cyclic AMP; Guinea Pigs; Histamine H1 Antagonists; In Vitro Techniques; Ion Channels; Neurotoxins; Sodium; Tranquilizing Agents; Tritium | 1985 |
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Hologram QSAR model for the prediction of human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Holography; Humans; Models, Biological; Models, Molecular; Molecular Structure; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2007 |
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship | 2008 |
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship | 2008 |
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics | 2010 |
A highly predictive 3D-QSAR model for binding to the voltage-gated sodium channel: design of potent new ligands.
Topics: Ligands; Models, Molecular; Quantitative Structure-Activity Relationship; Voltage-Gated Sodium Channels | 2014 |
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries | 2023 |
Simultaneous gas chromatographic determination of diphenylhydantoin, carbamazepin (Tegretol), phenobarbital and primidone in presence of Kemadrin (procyclidine) and Prolixin (fluphenazine) in plasma of psychiatric patients.
Topics: Anticonvulsants; Carbamazepine; Chromatography, Gas; Fluphenazine; Humans; Mental Disorders; Methods; Phenobarbital; Phenytoin; Primidone; Procyclidine; Pyrrolidines | 1978 |
Psychosocial management of patients with complex partial seizures.
Topics: Adult; Alcoholism; Carbamazepine; Delivery of Health Care; Drug Administration Schedule; Epilepsy; Epilepsy, Temporal Lobe; Female; Fluphenazine; Humans; Male; Mental Disorders; Middle Aged; Neurocognitive Disorders; Patient Acceptance of Health Care; Phenobarbital; Phenytoin; Schizophrenia; Social Environment; Social Problems; Socioeconomic Factors; Syndrome | 1975 |
Hematologic complications from tranquilizers in children.
Topics: Adolescent; Age Factors; Agranulocytosis; Bone Marrow Examination; Brain Damage, Chronic; Brain Diseases; Child; Dextroamphetamine; Eosinophilia; Female; Fluphenazine; Humans; Imipramine; Leukocyte Count; Leukocytosis; Leukopenia; Male; Methylphenidate; Phenobarbital; Phenytoin; Sex Factors; Thioridazine; Tranquilizing Agents | 1968 |
Effect of dopaminergic and GABA-ergic drugs given alone or in combination on the anticonvulsant action of phenobarbital and diphenylhydantoin in the electroshock test in mice.
Topics: Amantadine; Aminooxyacetic Acid; Amphetamine; Animals; Apomorphine; Baclofen; Dopamine; Electroshock; Female; Fluphenazine; gamma-Aminobutyric Acid; Haloperidol; Hydroxybutyrates; Levodopa; Male; Mice; Phenobarbital; Phenytoin; Receptors, Neurotransmitter; Seizures | 1980 |
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat | 2016 |