flunarizine has been researched along with ziconotide* in 1 studies
1 other study(ies) available for flunarizine and ziconotide
Article | Year |
---|---|
Capacitative Ca2+ entry into Xenopus oocytes is sensitive to omega-conotoxins GVIA, MVIIA and MVIIC.
We have studied capacitative Ca2+ entry into Xenopus oocytes by depleting intracellular Ca2+ stores with inositol 1,4,5-trisphosphate or thapsigargin. Capacitative Ca2+ entry was evoked by hyperpolarisation and monitored via the Ca(2+)-activated Cl- current. Hyperpolarisation-evoked currents increased with extracellular [Ca2+] in the range 0.9-5 mM, and were reversibly inhibited by extracellular Mg2+ (0.1-10 mM) by up to 60%. Currents were decreased by the voltage-gated Ca2+ channel antagonists omega-conotoxin GVIA, MVIIA and MVIIC (0.3-10 microM) and the inhibition of Ca2+ entry in individual oocytes by omega-conotoxins GVIA and MVIIA was highly heterogeneous, but not additive. Flunarizine (10 microM) and the imidazoles SK&F 96365 (10 microM), miconazole (40 microM) and econazole (40 microM) partly blocked Ca2+ entry. Ca2+ entry was unaffected by calciseptine (300 nM) or alpha-bungarotoxin (1 microM). The possibility that these compounds might inhibit the Ca(2+)-activated Cl- current rather than capacitative Ca2+ entry itself was examined by recording the Cl- current activated by the increase in [Ca2+]i activated by the flash photolysis of caged Ca2+. Eicosatetraynoic acid (2-10 microM) markedly inhibited, and La3+ (1 mM but not 100 microM) potentiated the increase in Ca(2+)-activated Cl- current. In contrast, omega-conotoxins and Mg2+ had no effect on the Ca(2+)-activated Cl- current itself. These findings support the hypothesis that capacitative Ca2+ entry into Xenopus oocytes occurs through channels with a pharmacology similar to that of neuronal non-L type voltage-gated Ca2+ channels. Topics: 5,8,11,14-Eicosatetraynoic Acid; Acetates; Animals; Bungarotoxins; Calcium; Calcium Channel Blockers; Calcium Channels; Chlorides; Econazole; Elapid Venoms; Ethylenediamines; Flunarizine; Imidazoles; Inositol 1,4,5-Trisphosphate; Ion Transport; Lanthanum; Miconazole; Niflumic Acid; omega-Conotoxin GVIA; omega-Conotoxins; Oocytes; Patch-Clamp Techniques; Peptides; Phosphatidylinositols; Photolysis; Signal Transduction; Xenopus laevis | 1998 |