flunarizine has been researched along with efonidipine* in 2 studies
2 other study(ies) available for flunarizine and efonidipine
Article | Year |
---|---|
A selective T-type Ca2+ channel blocker R(-) efonidipine.
Recently, novel compound R(-) efonidipine was reported to selectively block low-voltage-activated (LVA or T-type) Ca2+ channels in peripheral organs. We examined how R(-) efonidipine acts on T-type and high-voltage-activated (HVA) Ca2+ channels in mammalian central nervous system (CNS) neurons. Furthermore, we compared the effects of R(-) efonidipine with those of flunarizine and mibefradil on both T-type and HVA Ca2+ channels in rat hippocampal CA1 neurons by using the nystatin perforated-patch clamp technique. Flunarizine and mibefradil nonselectively inhibited both T-type and HVA Ca2+ channels, though the dose-dependent blocking potency of flunarizine on T-type Ca2+ channels was slightly stronger than that of mibefradil. In contrast, R(-) efonidipine inhibited only T-type Ca2+ channels and did not show any effect on HVA Ca2+ channels. The inhibitory actions of R(-) efonidipine or flunarizine were similar on both Ba2+ and Ca2+ current components passing through T-type Ca2+ channels. In addition, flunarizine but not R(-) efonidipine inhibited voltage-dependent Na+ channels and Ca2+-activated K+ channels. Thus, it appears that R(-) efonidipine is a selective blocker for T-type Ca2+ channels. It could be used as a pharmacological tool in future studies on T-type Ca2+ channels. Topics: Animals; Barium; Calcium; Calcium Channel Blockers; Calcium Channels; Calcium Channels, T-Type; Dihydropyridines; Dose-Response Relationship, Drug; Flunarizine; Mibefradil; Nitrophenols; Nystatin; Organophosphorus Compounds; Patch-Clamp Techniques; Potassium Channels, Calcium-Activated; Pyramidal Cells; Rats; Rats, Wistar; Sodium Channels | 2008 |
[Effect of efonidipine hydrochloride, a calcium channel blocker, on the experimental cerebral ischemia/anoxia].
The anti-ischemic and anti-anoxic effects of efonidipine, a dihydropyridine calcium antagonist, were studied in several models for cerebral ischemia and anoxia in mice and rats, and the effects were compared with those of nicardipine and flunarizine. Both efonidipine and flunarizine showed protective effects in the models of KCN-induced anoxia and complete ischemia induced by decapitation in mice 6 hr after the treatment, while nicardipine did not show such a long-lasting effect. Efonidipine (1 mg/kg, i.p.), but not nicardipine and flunarizine, prolonged the tolerance times in the asphyxic anoxia model. In mice, efonidipine (4 mg/kg, i.p.) significantly reduced the cumulative mortality rate after bilateral carotid artery ligation. The survival rates at 20 hr after bilateral carotid artery ligation were 33% in the group treated with efonidipine, significantly higher than that in the control group, 0%. On the other hand, the treatment with nicardipine or flunarizine did not increase the rates at 20 hr after the ligation. Moreover, efonidipine attenuated the disturbance of cerebral energy metabolism induced by decapitation in rats. These effects of efonidipine observed in this study were on the whole superior to those of the reference drugs, strongly suggesting the improving effect of efonidipine on cerebral ischemia and anoxia. Topics: Animals; Brain Ischemia; Calcium Channel Blockers; Dihydropyridines; Flunarizine; Hypoxia; Male; Mice; Mice, Inbred ICR; Nicardipine; Nitrophenols; Organophosphorus Compounds; Rats; Rats, Wistar | 1995 |