flumazenil and adenosine-5'-(n-ethylcarboxamide)

flumazenil has been researched along with adenosine-5'-(n-ethylcarboxamide) in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19901 (25.00)18.7374
1990's0 (0.00)18.2507
2000's2 (50.00)29.6817
2010's1 (25.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL1
Phillis, JW; Stair, RE1
Fidecka, S; Listos, J; Malec, D1

Other Studies

4 other study(ies) available for flumazenil and adenosine-5'-(n-ethylcarboxamide)

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
    PloS one, 2016, Volume: 11, Issue:10

    Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat

2016
Ro 15-1788 both antagonizes and potentiates adenosine-evoked depression of cerebral cortical neurons.
    European journal of pharmacology, 1987, Apr-14, Volume: 136, Issue:2

    Topics: Adenosine; Adenosine-5'-(N-ethylcarboxamide); Animals; Caffeine; Cerebral Cortex; Evoked Potentials; Flumazenil; Male; Rats; Rats, Inbred Strains

1987
Influence of adenosine receptor agonists on benzodiazepine withdrawal signs in mice.
    European journal of pharmacology, 2005, Oct-31, Volume: 523, Issue:1-3

    Topics: Adenosine; Adenosine-5'-(N-ethylcarboxamide); Animals; Anti-Anxiety Agents; Anticonvulsants; Benzodiazepines; Diazepam; Dose-Response Relationship, Drug; Flumazenil; Male; Mice; Pentylenetetrazole; Phenethylamines; Purinergic Agonists; Purinergic P1 Receptor Agonists; Purinergic P2 Receptor Agonists; Seizures; Substance Withdrawal Syndrome; Temazepam

2005