flumazenil has been researched along with 3-propoxy-beta-carboline in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (66.67) | 29.6817 |
2010's | 1 (33.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Cook, JM; Dayer, CA; He, X; Huang, Q; Liu, R; Ma, C; McKernan, R; Wenger, GR; Yu, S | 1 |
Clayton, T; Cook, J; DeLorey, TM; Furtmüller, R; Halliwell, RF; Harris, D; Huck, S; Sahbaie, P; Sieghart, W | 1 |
Clayton, T; Cook, JM; Cromer, BA; Ma, C; Majumder, S; Namjoshi, OA; Petrou, S; Platt, DM; Roth, BL; VanLinn, ML; Yin, W | 1 |
3 other study(ies) available for flumazenil and 3-propoxy-beta-carboline
Article | Year |
---|---|
Pharmacophore/receptor models for GABA(A)/BzR subtypes (alpha1beta3gamma2, alpha5beta3gamma2, and alpha6beta3gamma2) via a comprehensive ligand-mapping approach.
Topics: Animals; Benzodiazepines; Carbolines; Cell Line; Columbidae; Conditioning, Operant; Crystallography, X-Ray; Humans; Indoles; Ligands; Male; Models, Molecular; Pyrimidines; Quinolones; Radioligand Assay; Receptors, GABA-A; Saimiri; Stereoisomerism; Structure-Activity Relationship | 2000 |
Selective influence on contextual memory: physiochemical properties associated with selectivity of benzodiazepine ligands at GABAA receptors containing the alpha5 subunit.
Topics: Animals; Behavior, Animal; Benzodiazepines; Chemical Phenomena; Chemistry, Physical; Computer Simulation; Databases, Factual; Electrophysiology; Female; Ligands; Male; Memory; Mice; Models, Molecular; Molecular Structure; Oocytes; Protein Isoforms; Protein Subunits; Quantitative Structure-Activity Relationship; Receptors, GABA-A; Structure-Activity Relationship; Xenopus laevis | 2008 |
Design, synthesis, and subtype selectivity of 3,6-disubstituted β-carbolines at Bz/GABA(A)ergic receptors. SAR and studies directed toward agents for treatment of alcohol abuse.
Topics: Alcoholism; Animals; Benzodiazepines; Binding Sites; Carbolines; Cell Line; Computer Simulation; GABA-A Receptor Antagonists; Humans; Protein Subunits; Rats; Receptors, GABA-A; Stereoisomerism; Structure-Activity Relationship | 2010 |