flufenamic acid has been researched along with bumetanide in 8 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (12.50) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (25.00) | 29.6817 |
2010's | 5 (62.50) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Bellman, K; Knegtel, RM; Settimo, L | 1 |
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL | 1 |
McCabe, RD; Smith, PL; Sullivan, SK | 1 |
Katz, U; Nagel, W; Somieski, P | 1 |
Abdulnour-Nakhoul, S; Caymaz-Bor, C; Nakhoul, NL; Orlando, RC | 1 |
8 other study(ies) available for flufenamic acid and bumetanide
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation | 2014 |
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat | 2016 |
Concentration-dependent effects of disulfonic stilbenes on colonic chloride transport.
Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; 8-Bromo Cyclic Adenosine Monophosphate; Amiloride; Animals; Bumetanide; Calcimycin; Chlorides; Colon; Flufenamic Acid; Furosemide; Indomethacin; Intestinal Absorption; Intestinal Mucosa; Rabbits; Serous Membrane; Stilbenes | 1986 |
Selective inhibition of Cl(-) conductance in toad skin by blockers of Cl(-) channels and transporters.
Topics: Angiogenesis Inhibitors; Animals; Anion Transport Proteins; Anti-Inflammatory Agents, Non-Steroidal; Bufonidae; Bumetanide; Calcium Channel Blockers; Carrier Proteins; Chloride Channels; Chlorides; Cyclooxygenase Inhibitors; Diuretics; Dose-Response Relationship, Drug; Electric Conductivity; Eosine Yellowish-(YS); Flufenamic Acid; Fluorescent Dyes; Furosemide; Mefenamic Acid; Membrane Potentials; Niflumic Acid; Nitrobenzoates; ortho-Aminobenzoates; Patch-Clamp Techniques; Skin | 2001 |
Chloride transport in rabbit esophageal epithelial cells.
Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Acetates; Animals; Bicarbonates; Biological Transport, Active; Bumetanide; Calcium; Carbon Dioxide; Cell Membrane; Cell Membrane Permeability; Chlorides; Cyclic AMP; Electric Conductivity; Electric Impedance; Epithelial Cells; Esophagus; Flufenamic Acid; Indenes; Membrane Potentials; Microelectrodes; Rabbits | 2002 |