Page last updated: 2024-09-04

florfenicol amine and chloramphenicol

florfenicol amine has been researched along with chloramphenicol in 10 studies

*Chloramphenicol: An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) [MeSH]

*Chloramphenicol: An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) [MeSH]

Compound Research Comparison

Studies
(florfenicol amine)
Trials
(florfenicol amine)
Recent Studies (post-2010)
(florfenicol amine)
Studies
(chloramphenicol)
Trials
(chloramphenicol)
Recent Studies (post-2010) (chloramphenicol)
4432820,1133881,464

Protein Interaction Comparison

ProteinTaxonomyflorfenicol amine (IC50)chloramphenicol (IC50)
30S ribosomal protein S6Escherichia coli K-120.43
30S ribosomal protein S7Escherichia coli K-120.43
50S ribosomal protein L15Escherichia coli K-120.43
50S ribosomal protein L10Escherichia coli K-120.43
50S ribosomal protein L11Escherichia coli K-120.43
50S ribosomal protein L7/L12Escherichia coli K-120.43
50S ribosomal protein L19Escherichia coli K-120.43
50S ribosomal protein L1Escherichia coli K-120.43
50S ribosomal protein L20Escherichia coli K-120.43
50S ribosomal protein L27Escherichia coli K-120.43
50S ribosomal protein L28Escherichia coli K-120.43
50S ribosomal protein L29Escherichia coli K-120.43
50S ribosomal protein L31Escherichia coli K-120.43
50S ribosomal protein L31 type BEscherichia coli K-120.43
50S ribosomal protein L32Escherichia coli K-120.43
50S ribosomal protein L33Escherichia coli K-120.43
50S ribosomal protein L34Escherichia coli K-120.43
50S ribosomal protein L35Escherichia coli K-120.43
50S ribosomal protein L36Escherichia coli K-120.43
30S ribosomal protein S10Escherichia coli K-120.43
30S ribosomal protein S11Escherichia coli K-120.43
30S ribosomal protein S12Escherichia coli K-120.43
30S ribosomal protein S13Escherichia coli K-120.43
30S ribosomal protein S16Escherichia coli K-120.43
30S ribosomal protein S18Escherichia coli K-120.43
30S ribosomal protein S19Escherichia coli K-120.43
30S ribosomal protein S20Escherichia coli K-120.43
30S ribosomal protein S2Escherichia coli K-120.43
30S ribosomal protein S3Escherichia coli K-120.43
30S ribosomal protein S4Escherichia coli K-120.43
30S ribosomal protein S5Escherichia coli K-120.43
30S ribosomal protein S8Escherichia coli K-120.43
30S ribosomal protein S9Escherichia coli K-120.43
50S ribosomal protein L13Escherichia coli K-120.43
50S ribosomal protein L14Escherichia coli K-120.43
50S ribosomal protein L16Escherichia coli K-120.43
50S ribosomal protein L23Escherichia coli K-120.43
30S ribosomal protein S15Escherichia coli K-120.43
50S ribosomal protein L17Escherichia coli K-120.43
50S ribosomal protein L21Escherichia coli K-120.43
50S ribosomal protein L30Escherichia coli K-120.43
50S ribosomal protein L6Escherichia coli K-120.43
30S ribosomal protein S14Escherichia coli K-120.43
30S ribosomal protein S17Escherichia coli K-120.43
30S ribosomal protein S1Escherichia coli K-120.43
50S ribosomal protein L18Escherichia coli K-120.43
50S ribosomal protein L2Escherichia coli K-120.43
50S ribosomal protein L3Escherichia coli K-120.43
50S ribosomal protein L24Escherichia coli K-120.43
50S ribosomal protein L4Escherichia coli K-120.43
50S ribosomal protein L22Escherichia coli K-120.43
50S ribosomal protein L5Escherichia coli K-120.43
30S ribosomal protein S21Escherichia coli K-120.43
50S ribosomal protein L25Escherichia coli K-120.43
50S ribosomal protein L36 2Escherichia coli K-120.43

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (20.00)29.6817
2010's7 (70.00)24.3611
2020's1 (10.00)2.80

Authors

AuthorsStudies
Cheng, L; Guo, X; Liu, Z; Shen, J; Wang, Z; Zhang, S1
Ding, S; Jiang, H; Li, C; Li, J; Li, X; Shen, J; Xia, X1
Alechaga, É; Galceran, MT; Moyano, E1
Jiang, H; Niu, L; Shen, J; Tao, X; Wang, X; Wang, Z; Wu, X; Yu, X; Zhu, J1
Chen, D; Huang, L; Liu, Z; Pan, Y; Tao, Y; Wang, X; Wang, Y; Wei, H; Yuan, Z; Zhu, F1
Fedeniuk, RW; Mizuno, M; Neiser, C; O'Byrne, C1
Fan, X; Jia, Z; Rao, Z; Song, R; Suo, D; Wei, S; Xiao, Z1
Barcellos Hoff, R; Barreto, F; Dalla Costa, T; Ribeiro, C1
Bu, X; Dai, G; Guo, Y; Liu, C; Pang, M; Shi, H; Wang, B; Wang, J; Wang, R; Wang, Y; Xie, K; Xie, X; Zhang, G; Zhang, T; Zhang, Y; Zhao, X1
Barnes, P; Crooks, SRH; Faulkner, DV; Fodey, TL; Thompson, CS; Traynor, IM1

Other Studies

10 other study(ies) available for florfenicol amine and chloramphenicol

ArticleYear
Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography-tandem mass spectrometry.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2008, Nov-15, Volume: 875, Issue:2

    Topics: Animals; Anti-Bacterial Agents; Chickens; Chloramphenicol; Chromatography, Liquid; Deuterium; Drug Residues; Muscles; Reference Standards; Reproducibility of Results; Sensitivity and Specificity; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Thiamphenicol

2008
Determination of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry and porcine muscle and liver by gas chromatography-negative chemical ionization mass spectrometry.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2009, May-15, Volume: 877, Issue:14-15

    Topics: Animals; Chloramphenicol; Chromatography, Gas; Liver; Muscles; Poultry; Spectrometry, Mass, Electrospray Ionization; Swine; Thiamphenicol

2009
Ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of phenicol drugs and florfenicol-amine in foods.
    The Analyst, 2012, May-21, Volume: 137, Issue:10

    Topics: Animals; Anti-Bacterial Agents; Chickens; Chloramphenicol; Chromatography, High Pressure Liquid; Fishes; Food Analysis; Honey; Meat; Solid Phase Extraction; Swine; Tandem Mass Spectrometry; Thiamphenicol

2012
Simultaneous determination of chloramphenicol, florfenicol and florfenicol amine in ham sausage with a hybrid chemiluminescent immunoassay.
    Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment, 2013, Volume: 30, Issue:5

    Topics: Animals; Anti-Bacterial Agents; Chloramphenicol; Immunoassay; Limit of Detection; Luminescence; Meat Products; Reproducibility of Results; Swine; Thiamphenicol

2013
Evaluation of matrix solid-phase dispersion (MSPD) extraction for multi-fenicols determination in shrimp and fish by liquid chromatography-electrospray ionisation tandem mass spectrometry.
    Food chemistry, 2014, May-01, Volume: 150

    Topics: Animals; Anti-Bacterial Agents; Chloramphenicol; Chromatography, Liquid; Crustacea; Fishes; Seafood; Shellfish; Solid Phase Extraction; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Thiamphenicol

2014
Development of LC-MS/MS methodology for the detection/determination and confirmation of chloramphenicol, chloramphenicol 3-O-β-d-glucuronide, florfenicol, florfenicol amine and thiamphenicol residues in bovine, equine and porcine liver.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2015, Jun-01, Volume: 991

    Topics: Animals; Anti-Bacterial Agents; Cattle; Chloramphenicol; Chromatography, Liquid; Drug Residues; Glucuronides; Horses; Limit of Detection; Liver; Solid Phase Extraction; Swine; Tandem Mass Spectrometry; Thiamphenicol; Veterinary Drugs

2015
Development of a subcritical water extraction approach for trace analysis of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry tissues.
    Journal of chromatography. A, 2015, Oct-30, Volume: 1418

    Topics: Animals; Chloramphenicol; Chromatography, High Pressure Liquid; Drug Residues; Limit of Detection; Poultry; Solid Phase Extraction; Solvents; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Thiamphenicol; Veterinary Drugs

2015
Determination of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in poultry, swine, bovine and fish by liquid chromatography-tandem mass spectrometry.
    Journal of chromatography. A, 2016, Jun-03, Volume: 1449

    Topics: Animals; Cattle; Chloramphenicol; Chromatography, Liquid; Drug Residues; Fishes; Food Analysis; Laboratory Proficiency Testing; Muscle, Skeletal; Poultry; Reproducibility of Results; Swine; Tandem Mass Spectrometry; Thiamphenicol

2016
Quantitative analysis of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in eggs via liquid chromatography-electrospray ionization tandem mass spectrometry.
    Food chemistry, 2018, Dec-15, Volume: 269

    Topics: Chloramphenicol; Chromatography, Liquid; Drug Residues; Eggs; Food Contamination; Reproducibility of Results; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Thiamphenicol

2018
Screening method for the detection of residues of amphenicol antibiotics in bovine milk by optical biosensor.
    Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment, 2020, Volume: 37, Issue:11

    Topics: Animals; Anti-Bacterial Agents; Biosensing Techniques; Cattle; Chloramphenicol; Chromatography, High Pressure Liquid; Drug Evaluation, Preclinical; Drug Residues; Food Hypersensitivity; Humans; Milk; Tandem Mass Spectrometry; Thiamphenicol

2020