florfenicol amine has been researched along with chloramphenicol in 10 studies
*Chloramphenicol: An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) [MeSH]
*Chloramphenicol: An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) [MeSH]
Studies (florfenicol amine) | Trials (florfenicol amine) | Recent Studies (post-2010) (florfenicol amine) | Studies (chloramphenicol) | Trials (chloramphenicol) | Recent Studies (post-2010) (chloramphenicol) |
---|---|---|---|---|---|
44 | 3 | 28 | 20,113 | 388 | 1,464 |
Protein | Taxonomy | florfenicol amine (IC50) | chloramphenicol (IC50) |
---|---|---|---|
30S ribosomal protein S6 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S7 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L15 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L10 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L11 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L7/L12 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L19 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L1 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L20 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L27 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L28 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L29 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L31 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L31 type B | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L32 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L33 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L34 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L35 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L36 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S10 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S11 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S12 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S13 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S16 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S18 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S19 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S20 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S2 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S3 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S4 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S5 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S8 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S9 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L13 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L14 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L16 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L23 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S15 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L17 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L21 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L30 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L6 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S14 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S17 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S1 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L18 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L2 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L3 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L24 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L4 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L22 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L5 | Escherichia coli K-12 | 0.43 | |
30S ribosomal protein S21 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L25 | Escherichia coli K-12 | 0.43 | |
50S ribosomal protein L36 2 | Escherichia coli K-12 | 0.43 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (20.00) | 29.6817 |
2010's | 7 (70.00) | 24.3611 |
2020's | 1 (10.00) | 2.80 |
Authors | Studies |
---|---|
Cheng, L; Guo, X; Liu, Z; Shen, J; Wang, Z; Zhang, S | 1 |
Ding, S; Jiang, H; Li, C; Li, J; Li, X; Shen, J; Xia, X | 1 |
Alechaga, É; Galceran, MT; Moyano, E | 1 |
Jiang, H; Niu, L; Shen, J; Tao, X; Wang, X; Wang, Z; Wu, X; Yu, X; Zhu, J | 1 |
Chen, D; Huang, L; Liu, Z; Pan, Y; Tao, Y; Wang, X; Wang, Y; Wei, H; Yuan, Z; Zhu, F | 1 |
Fedeniuk, RW; Mizuno, M; Neiser, C; O'Byrne, C | 1 |
Fan, X; Jia, Z; Rao, Z; Song, R; Suo, D; Wei, S; Xiao, Z | 1 |
Barcellos Hoff, R; Barreto, F; Dalla Costa, T; Ribeiro, C | 1 |
Bu, X; Dai, G; Guo, Y; Liu, C; Pang, M; Shi, H; Wang, B; Wang, J; Wang, R; Wang, Y; Xie, K; Xie, X; Zhang, G; Zhang, T; Zhang, Y; Zhao, X | 1 |
Barnes, P; Crooks, SRH; Faulkner, DV; Fodey, TL; Thompson, CS; Traynor, IM | 1 |
10 other study(ies) available for florfenicol amine and chloramphenicol
Article | Year |
---|---|
Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography-tandem mass spectrometry.
Topics: Animals; Anti-Bacterial Agents; Chickens; Chloramphenicol; Chromatography, Liquid; Deuterium; Drug Residues; Muscles; Reference Standards; Reproducibility of Results; Sensitivity and Specificity; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Thiamphenicol | 2008 |
Determination of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry and porcine muscle and liver by gas chromatography-negative chemical ionization mass spectrometry.
Topics: Animals; Chloramphenicol; Chromatography, Gas; Liver; Muscles; Poultry; Spectrometry, Mass, Electrospray Ionization; Swine; Thiamphenicol | 2009 |
Ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of phenicol drugs and florfenicol-amine in foods.
Topics: Animals; Anti-Bacterial Agents; Chickens; Chloramphenicol; Chromatography, High Pressure Liquid; Fishes; Food Analysis; Honey; Meat; Solid Phase Extraction; Swine; Tandem Mass Spectrometry; Thiamphenicol | 2012 |
Simultaneous determination of chloramphenicol, florfenicol and florfenicol amine in ham sausage with a hybrid chemiluminescent immunoassay.
Topics: Animals; Anti-Bacterial Agents; Chloramphenicol; Immunoassay; Limit of Detection; Luminescence; Meat Products; Reproducibility of Results; Swine; Thiamphenicol | 2013 |
Evaluation of matrix solid-phase dispersion (MSPD) extraction for multi-fenicols determination in shrimp and fish by liquid chromatography-electrospray ionisation tandem mass spectrometry.
Topics: Animals; Anti-Bacterial Agents; Chloramphenicol; Chromatography, Liquid; Crustacea; Fishes; Seafood; Shellfish; Solid Phase Extraction; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Thiamphenicol | 2014 |
Development of LC-MS/MS methodology for the detection/determination and confirmation of chloramphenicol, chloramphenicol 3-O-β-d-glucuronide, florfenicol, florfenicol amine and thiamphenicol residues in bovine, equine and porcine liver.
Topics: Animals; Anti-Bacterial Agents; Cattle; Chloramphenicol; Chromatography, Liquid; Drug Residues; Glucuronides; Horses; Limit of Detection; Liver; Solid Phase Extraction; Swine; Tandem Mass Spectrometry; Thiamphenicol; Veterinary Drugs | 2015 |
Development of a subcritical water extraction approach for trace analysis of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry tissues.
Topics: Animals; Chloramphenicol; Chromatography, High Pressure Liquid; Drug Residues; Limit of Detection; Poultry; Solid Phase Extraction; Solvents; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Thiamphenicol; Veterinary Drugs | 2015 |
Determination of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in poultry, swine, bovine and fish by liquid chromatography-tandem mass spectrometry.
Topics: Animals; Cattle; Chloramphenicol; Chromatography, Liquid; Drug Residues; Fishes; Food Analysis; Laboratory Proficiency Testing; Muscle, Skeletal; Poultry; Reproducibility of Results; Swine; Tandem Mass Spectrometry; Thiamphenicol | 2016 |
Quantitative analysis of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in eggs via liquid chromatography-electrospray ionization tandem mass spectrometry.
Topics: Chloramphenicol; Chromatography, Liquid; Drug Residues; Eggs; Food Contamination; Reproducibility of Results; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Thiamphenicol | 2018 |
Screening method for the detection of residues of amphenicol antibiotics in bovine milk by optical biosensor.
Topics: Animals; Anti-Bacterial Agents; Biosensing Techniques; Cattle; Chloramphenicol; Chromatography, High Pressure Liquid; Drug Evaluation, Preclinical; Drug Residues; Food Hypersensitivity; Humans; Milk; Tandem Mass Spectrometry; Thiamphenicol | 2020 |