Page last updated: 2024-08-21

flavone and eriodictyol

flavone has been researched along with eriodictyol in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (14.29)18.2507
2000's0 (0.00)29.6817
2010's5 (71.43)24.3611
2020's1 (14.29)2.80

Authors

AuthorsStudies
Fernandes, E; Freitas, M; Porto, G; Ribeiro, D; Silva, AM; Tomé, SM1
Cabrita, EJ; Fernandes, E; Freitas, M; Marques, MM; Porto, G; Ribeiro, D; Silva, AM; Tomé, SM1
Kang, Y; Kim, BG; Kim, S; Lee, Y; Yoon, Y1
Ash, K; Grohmann, K; Manthey, CL; Manthey, JA; Montanari, A1
Kogami, Y; Matsuda, H; Nakamura, S; Sugiyama, T; Ueno, T; Yoshikawa, M1
Bicknell, KA; Farrimond, JA; Putnam, SE; Swioklo, S; Watson, KA; Williamson, EM1
Fernandes, E; Fernandes, PA; Freitas, M; Oliveira, A; Proença, C; Ramos, MJ; Ribeiro, D; Silva, AMS; Sousa, JLC1

Other Studies

7 other study(ies) available for flavone and eriodictyol

ArticleYear
Modulation of human neutrophils' oxidative burst by flavonoids.
    European journal of medicinal chemistry, 2013, Volume: 67

    Topics: Flavonoids; Humans; Luminescent Measurements; Molecular Structure; Neutrophils; Oxidation-Reduction

2013
Inhibition of LOX by flavonoids: a structure-activity relationship study.
    European journal of medicinal chemistry, 2014, Jan-24, Volume: 72

    Topics: Dose-Response Relationship, Drug; Flavonoids; Glycine max; Humans; Leukotriene B4; Lipoxygenase; Molecular Structure; Neutrophils; Structure-Activity Relationship

2014
Inhibitory potential of flavonoids on PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain.
    Bioorganic & medicinal chemistry letters, 2017, 02-01, Volume: 27, Issue:3

    Topics: 3-Phosphoinositide-Dependent Protein Kinases; Binding Sites; Flavones; Flavonoids; Flavonols; Liposomes; Molecular Docking Simulation; Phosphatidylinositol Phosphates; Pleckstrin Homology Domains; Protein Binding; Quantitative Structure-Activity Relationship

2017
Polymethoxylated flavones derived from citrus suppress tumor necrosis factor-alpha expression by human monocytes.
    Journal of natural products, 1999, Volume: 62, Issue:3

    Topics: Citrus; Cyclic AMP; Flavonoids; Humans; In Vitro Techniques; Lipopolysaccharides; Monocytes; Phosphodiesterase Inhibitors; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tumor Necrosis Factor-alpha

1999
Structural requirements of flavonoids for the adipogenesis of 3T3-L1 cells.
    Bioorganic & medicinal chemistry, 2011, May-01, Volume: 19, Issue:9

    Topics: 3T3-L1 Cells; Adipogenesis; Animals; CCAAT-Enhancer-Binding Protein-alpha; CCAAT-Enhancer-Binding Protein-beta; CCAAT-Enhancer-Binding Protein-delta; Deoxyglucose; Fatty Acid-Binding Proteins; Flavonoids; Glucose Transporter Type 4; Mice; PPAR gamma; Structure-Activity Relationship

2011
Defining Key Structural Determinants for the Pro-osteogenic Activity of Flavonoids.
    Journal of natural products, 2015, Nov-25, Volume: 78, Issue:11

    Topics: Cell Differentiation; Flavonoids; Humans; Mesenchymal Stem Cells; Molecular Structure; Osteogenesis; Signal Transduction; Structure-Activity Relationship

2015
Structural Specificity of Flavonoids in the Inhibition of Human Fructose 1,6-Bisphosphatase.
    Journal of natural products, 2020, 05-22, Volume: 83, Issue:5

    Topics: Drug Design; Enzyme Inhibitors; Flavonoids; Fructose; Fructose-Bisphosphatase; Humans; Hypoglycemic Agents; Liver; Molecular Structure

2020