flavin-adenine-dinucleotide and siroheme

flavin-adenine-dinucleotide has been researched along with siroheme* in 3 studies

Other Studies

3 other study(ies) available for flavin-adenine-dinucleotide and siroheme

ArticleYear
Expression and characterization of the assimilatory NADH-nitrite reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Archives of microbiology, 2006, Volume: 186, Issue:4

    A nas gene region from Rhodobacter capsulatus E1F1 containing the putative nasB gene for nitrite reductase was previously cloned. The recombinant His(6)-NasB protein overproduced in E. coli showed nitrite reductase activity in vitro with both reduced methyl viologen and NADH as electron donors. The apparent K ( m ) values for nitrite and NADH were 0.5 mM and 20 microM, respectively, at the pH and temperature optima (pH 9 and 30 degrees C). The optical spectrum showed features that indicate the presence of FAD, iron-sulfur cluster and siroheme as prosthetic groups, and nitrite reductase activity was inhibited by sulfide and iron reagents. These results indicate that the phototrophic bacterium R. capsulatus E1F1 possesses an assimilatory NADH-nitrite reductase similar to that described in non-phototrophic organisms.

    Topics: Cloning, Molecular; Flavin-Adenine Dinucleotide; Heme; NAD; Nitrates; Nitrite Reductases; Paraquat; Recombinant Proteins; Rhodobacter capsulatus

2006
Functional dissection and site-directed mutagenesis of the structural gene for NAD(P)H-nitrite reductase in Neurospora crassa.
    The Journal of biological chemistry, 1996, Sep-27, Volume: 271, Issue:39

    Neurospora crassa NAD(P)H-nitrite reductase, encoded by the nit-6 gene, is a soluble, alpha2-type homodimeric protein composed of 127-kDa polypeptide subunits. This multicenter oxidation-reduction enzyme utilizes either NADH or NADPH as electron donor and possesses as prosthetic groups two iron-sulfur (Fe4S4) clusters, two siroheme groups, and two FAD molecules. The native activity of the enzyme is the NAD(P)H-dependent reduction of nitrite to ammonia. In addition, N. crassa nitrite reductase displays several partial activities in vitro, including a siroheme-independent NAD(P)H-cytochrome c reductase activity and an FAD-independent dithionite-nitrite reductase activity. These partial activities are presumed to be manifestations of discrete functional domains within the protein. A full-length nit-6 cDNA was constructed and used in developing an expression system within E. coli capable of yielding high levels of NADPH-nitrite reductase activity. Maximal expression was obtained in nirB- E. coli cells grown anaerobically at 22 +/- 1 degrees C, in conjunction with co-expression of a plasmid-borne cysG gene (encoding the rate-limiting enzyme in siroheme synthesis) and co-transformation with plasmid pGroESL (encoding bacterial chaperonins GroES and GroEL). Dissection of gene segments encoding putative functional domains within the nit-6 gene was performed. Expression of a partial cDNA construct encoding the FAD-/NAD-binding domain yielded extracts with NADPH-cytochrome c reductase activity but no NADPH-nitrite reductase activity or dithionite-nitrite reductase activity. Expression of a cDNA construct encoding the (Fe4S4)-siroheme-binding domain resulted in extracts possessing dithionite-nitrite reductase activity but no NADPH-nitrite reductase or NADPH-cytochrome c reductase activity. Analysis of site-directed mutations altering amino acid residues Cys-331 within the FAD-/NAD-binding domain and Ser-755 within the (Fe4S4)-siroheme-binding domain of the nitrite reductase demonstrated that these residues were not essential for native or partial enzyme activity. Cys-757 within the (Fe4S4)-siroheme-binding domain was essential for native enzyme activity.

    Topics: Amino Acid Sequence; Antigens, Fungal; Binding Sites; Blotting, Western; DNA, Complementary; Flavin-Adenine Dinucleotide; Fungal Proteins; Genes, Fungal; Heme; Molecular Sequence Data; Mutagenesis, Site-Directed; NAD; Neurospora crassa; Nitrite Reductase (NAD(P)H); Nitrite Reductases; Recombinant Proteins; RNA, Fungal; RNA, Messenger; Structure-Activity Relationship

1996
Neurospora crassa NAD(P)H-nitrite reductase. Studies on its composition and structure.
    The Journal of biological chemistry, 1981, Sep-25, Volume: 256, Issue:18

    Neurospora crassa nitrite reductase (Mr = 290,000) catalyzes the NAD(P)H-dependent 6-electron reduction of nitrite to ammonia via flavin and siroheme prosthetic groups. Homogeneous N. crassa nitrite reductase has been prepared employing conventional purification methods followed by affinity chromatography on blue dextran-Sepharose 4B. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of homogeneous nitrite reductase reveals a single subunit band of Mr = 140,000. Isoelectric focusing of dissociated enzyme followed by sodium dodecyl sulfate-gel electrophoresis in the second dimension yields a single subunit spot with an isoelectric point at pH 6.8-6.9. Two-dimensional thin layer chromatography of acid-hydrolyzed nitrite reductase treated with 5-dimethylaminoaphthalene-1-sulfonyl chloride yields a single reactive NH2-terminal corresponding to glycine. An investigation of the prosthetic groups of nitrite reductase reveals little or no flavin associated with the purified protein, although exogenously added FAD is required for activity in vitro. An iron content of 9-10 Fe eq/mol suggests the presence of nonheme iron in addition to the siroheme moieties. Amino acid analysis yields 43 cysteinyl residues and sulfhydryl reagents react with 50 thiol eq/mol of nitrite reductase. The non-cysteinyl sulfur content, determined as 8.1 acid-labile sulfide eq/mol, is presumably associated with nonheme iron to form iron-sulfur centers. We conclude that N. crassa nitrite reductase is a homodimer of large molecular weight subunits housing an electron transfer complex of FAD, iron-sulfur centers, and siroheme to mediate the reduced pyridine nucleotide-dependent reduction of nitrite to ammonia.

    Topics: Amino Acids; Electron Transport; Flavin-Adenine Dinucleotide; Heme; Iron; Iron-Sulfur Proteins; Molecular Weight; NADH, NADPH Oxidoreductases; Neurospora; Neurospora crassa; Nitrite Reductases

1981