flavin-adenine-dinucleotide has been researched along with propionic-acid* in 2 studies
2 other study(ies) available for flavin-adenine-dinucleotide and propionic-acid
Article | Year |
---|---|
Identifying novel genes and chemicals related to nasopharyngeal cancer in a heterogeneous network.
Nasopharyngeal cancer or nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. The factors that induce nasopharyngeal cancer are still not clear. Additional information about the chemicals or genes related to nasopharyngeal cancer will promote a better understanding of the pathogenesis of this cancer and the factors that induce it. Thus, a computational method NPC-RGCP was proposed in this study to identify the possible relevant chemicals and genes based on the presently known chemicals and genes related to nasopharyngeal cancer. To extensively utilize the functional associations between proteins and chemicals, a heterogeneous network was constructed based on interactions of proteins and chemicals. The NPC-RGCP included two stages: the searching stage and the screening stage. The former stage is for finding new possible genes and chemicals in the heterogeneous network, while the latter stage is for screening and removing false discoveries and selecting the core genes and chemicals. As a result, five putative genes, CXCR3, IRF1, CDK1, GSTP1, and CDH2, and seven putative chemicals, iron, propionic acid, dimethyl sulfoxide, isopropanol, erythrose 4-phosphate, β-D-Fructose 6-phosphate, and flavin adenine dinucleotide, were identified by NPC-RGCP. Extensive analyses provided confirmation that the putative genes and chemicals have significant associations with nasopharyngeal cancer. Topics: 2-Propanol; Antigens, CD; Cadherins; Carcinoma; CDC2 Protein Kinase; Computational Biology; Dimethyl Sulfoxide; Flavin-Adenine Dinucleotide; Fructosephosphates; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene-Environment Interaction; Glutathione S-Transferase pi; Humans; Interferon Regulatory Factor-1; Iron; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Nasopharynx; Propionates; Receptors, CXCR3; Sugar Phosphates | 2016 |
Lactate reduction in Clostridium propionicum. Purification and properties of lactyl-CoA dehydratase.
Clostridium propionicum converts lactate to propionate (Cardon, B.P., and Barker, H.A. (1947) Arch. Biochem. Biophys. 12, 165-171). We have obtained a soluble system that carries out this conversion as well as the hydration of acrylate to lactate and the reduction of acrylate to propionate. 3-Pentynyl-CoA inhibits reduction of acrylate and lactate to propionate, but not hydration of acrylate to lactate by cell extracts. The conversion probably involves CoA esters. When [beta-2H3] lactate is used as a substrate, the rate of propionate formation is reduced 1.8-fold, and the methyl group of the resulting propionate has lost 1.4 deuterium atoms. These results are consistent with the intermediate formation of acrylate (acrylyl-CoA) in the conversion of D-lactate to propionate. Two proteins, which we designate E I and E II, were purified to greater than 90% homogeneity. Together, they catalyze the hydration of acrylyl-CoA to lactyl-CoA. E I has an apparent molecular mass of 27,000 daltons and is rapidly and irreversibly inactivated by O2. E II consists of two subunits of molecular mass 41,000 and 48,000 daltons and contains equal amounts of riboflavin and flavin mononucleotide. Hydration of acrylyl-CoA to lactyl-CoA requires Mg2+ and catalytic quantities of ATP. GTP can replace ATP, but ADP and adenylyl imidodiphosphate cannot. We were unable to detect any stable intermediate during acrylyl-CoA hydration. Finally, we proposed a mechanism for this reaction. Topics: Acrylates; Acyl Coenzyme A; Adenosine Triphosphate; Clostridium; Deuterium; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Hydro-Lyases; Kinetics; Lactates; Lactic Acid; Magnesium; Magnetic Resonance Spectroscopy; Molecular Weight; Oxidation-Reduction; Oxygen; Propionates; Spectrophotometry; Structure-Activity Relationship | 1985 |