flavin-adenine-dinucleotide and propargylglycine

flavin-adenine-dinucleotide has been researched along with propargylglycine* in 3 studies

Other Studies

3 other study(ies) available for flavin-adenine-dinucleotide and propargylglycine

ArticleYear
Properties of D-amino acid oxidase covalently modified upon its oxidation of D-propargylglycine.
    Biochemistry, 1978, Jul-11, Volume: 17, Issue:14

    Upon oxidation of D-propargylglycine by D-amino acid oxidase, the enzyme is converted by covalent alkylation to catalytic species with different properties from those of native enzyme. At least five distinct modified enzyme species are present in the preparation, as determined by gel electro-focusing. Individual characterization of the components has not yet been attempted. The combined kinetic and spectral properties of the preparation have been studied. The modified enzymes have a marked preference for hydrophobic amino acids: the rates of oxidation decrease in the series D-phenylalanine, D-methionine, D-norleucine, D-norvaline, D-alpha-aminobutyrate, D-alanine. In addition, the observed Kms of the amino acids are increased, especially those of the smaller substrates (D-alanine and D-alpha-aminobutyrate). A primary kinetic isotope effect is observed upon oxidation of amino acids by the modified enzymes, evidence that this catalysis exhibits a different rate-determining step from catalysis by native enzyme. The modified apoenzyme exhibits intense absorbance at 318--320 nm, not present in native enzyme. This chromophore can be partially (75%) removed by treatment of the modified enzyme with hydrazine. However, the activity of native enzyme is not substantially restored by this process, suggesting the existence of superficial alkylations in addition to the modification responsible for the observed changes in kinetic parameters.

    Topics: Alkynes; D-Amino-Acid Oxidase; Flavin-Adenine Dinucleotide; Glycine; Kinetics; Spectrophotometry; Substrate Specificity

1978
Vinylglycine and proparglyglycine: complementary suicide substrates for L-amino acid oxidase and D-amino acid oxidase.
    Biochemistry, 1976, Jul-13, Volume: 15, Issue:14

    Proparglyglycine (2-amino-4-pentynoate) and vinylglycine (2-amino-3-butenoate) have been examined as substrates and possible inactivators of two flavo enzymes, D-amino acid oxidase from pig kidney and L-amino acid oxidase from Crotalus adamanteus venom. Vinylglycine is rapidly oxidized by both enzymes but only L-amino acid oxidase is inactivated under assay conditions. The loss of activity probably involves covalent modification of an active site residue rather than the flavin adenine dinucleotide coenzyme and occurs once every 20000 turnovers. We have confirmed the recent observation (Horiike, K, Hishina, Y., Miyake, Y., and Yamano, T. (1975) J, Biochem. (Tokyo), 78, 57) that D-proparglglycine is oxidized with a time-dependent loss of activity by D-amino acid oxidase and have examined some mechanistic aspects of this inactivation, The extent of residual oxidase activity, insensitive to further inactivation, is about 2%, at which point 1.7 labels/subunit have been introduced with propargly[2-14C]glycine as substrate. L-Proparglyclycine is a substrate but not an inactivator of L-amino acid oxidase and the product ahat accumulats in the nonnucleophilic N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid buffer is acetopyruvate. In the presence of butylamine HCl, a species with lambdaman 317 nm (epsilon = 15 000) accumulates that may be a conjugated eneamine adduct. The same species accumulates from D-amino acid oxidase oxidation of D-propargylglycine prior to inactivation; the inactivated apo D-amino acid oxidase has a new peak at 317 nm that is probably a similar eneamine. A likely inactivating species is 2-keto-3,4-pentadienoate arising from facile rearrangement of the expected initial product 2-keto 4 pentynoate. Vinylglycine and proparglyglycine show inactivation specificity, then, for L-and D-amino acid oxidase, respectively.

    Topics: Alkynes; Amino Acid Oxidoreductases; Amino Acids; Aminobutyrates; Animals; Binding Sites; Bromides; Buffers; Butylamines; D-Amino-Acid Oxidase; Flavin-Adenine Dinucleotide; Glycine; Kidney; Kinetics; Protein Binding; Snake Venoms; Swine

1976
Affinity labeling of D-amino acid oxidase with an acetylenic substrate.
    Journal of biochemistry, 1975, Volume: 78, Issue:1

    The acetylenic substrate, D-2-amino-4-pentynoic acid (D-propargylglycine), was oxidatively deaminated by hog kidney D-amino acid oxidase[EC 1.4.3.3], with accompanying inactivation of the enzyme. The flavin which was extracted by hot methanol from the inactivated enzyme was identical with authentic FAD by thin-layer chromatography and circular dichroism. The excitation spectrum of emission at 520 nm of the released flavin was very similar to the absorption spectrum of oxidized FAD. The released flavin was reduced by potassium borohydride. The apoenzyme prepared after propargylglycine treatment did not show restored D-amino acid oxidase activity on adding exogenous FAD. The absorption spectrum of this inactivated apoenzyme showed absorption peaks at 279 and 317 nm, and a shoulder at about 290 nm. These results strongly indicate that the inactivation reaction is a dynamic affinity labeling with D-propargylglycine which produces irreversible inactivation of the enzyme by a covalent modification of an amino acid residue at the active site.

    Topics: Affinity Labels; Alkynes; Amino Acids; Animals; Catalase; Circular Dichroism; D-Amino-Acid Oxidase; Deamination; Enzyme Activation; Flavin-Adenine Dinucleotide; Glycine; Kidney; Oxygen Consumption; Swine

1975