flavin-adenine-dinucleotide and phenothiazine

flavin-adenine-dinucleotide has been researched along with phenothiazine* in 3 studies

Other Studies

3 other study(ies) available for flavin-adenine-dinucleotide and phenothiazine

ArticleYear
Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors.
    International journal of molecular sciences, 2017, Mar-10, Volume: 18, Issue:3

    The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from

    Topics: Aspergillus; Benzoquinones; Flavin-Adenine Dinucleotide; Fungal Proteins; Glucose Dehydrogenases; Kinetics; Oxidation-Reduction; Phenothiazines

2017
Photoinduced reductive repair of thymine glycol: implications for excess electron transfer through DNA containing modified bases.
    Journal of the American Chemical Society, 2006, Aug-23, Volume: 128, Issue:33

    Photoinduced reduction of thymine glycol in oligodeoxynucleotides was investigated using either a reduced form of flavin adenine dinucleotide (FADH(-)) as an intermolecular electron donor or covalently linked phenothiazine (PTZ) as an intramolecular electron donor. Intermolecular electron donation from photoexcited flavin (FADH(-)) to free thymidine glycol generated thymidine in high yield, along with a small amount of 6-hydroxy-5,6-dihydrothymidine. In the case of photoreduction of 4-mer long single-stranded oligodeoxynucleotides containing thymine glycol by *FADH(-), the restoration yield of thymine was varied depending on the sequence of oligodeoxynucleotides. Time-resolved spectroscopic study on the photoreduction by laser-excited N,N-dimethylaniline (DMA) suggested elimination of a hydroxyl ion from the radical anion of thymidine glycol with a rate constant of approximately 10(4) s(-1) generates 6-hydroxy-5,6-dihydrothymidine (6-HOT(*)) as a key intermediate, followed by further reduction of 6-HOT(*) to thymidine or 6-hydroxy-5,6-dihydrothymdine (6-HOT). On the other hand, an excess electron injected into double-stranded DNA containing thymine glycol was not trapped at the lesion but was further transported along the duplex. Considering redox properties of the nucleobases and PTZ, competitive excess electron trapping at pyrimidine bases (thymine, T and cytosine, C) which leads to protonation of the radical anion (T(-)(*), C(-)(*)) or rapid back electron transfer to the radical cation of PTZ (PTZ(+)(*)), is presumably faster than elimination of the hydroxyl ion from the radical anion of thymine glycol in DNA.

    Topics: DNA; DNA Damage; Electron Transport; Flavin-Adenine Dinucleotide; Lasers; Light; Oligonucleotides; Oxidation-Reduction; Phenothiazines; Photolysis; Thymine

2006
STUDIES OF FLAVIN ADENINE DINUCLEOTIDE-REQUIRING ENZYMES AND PHENOTHIAZINES-I. INTERACTIONS OF CHLORPROMAZINE AND D-AMINO ACID OXIDASE.
    Biochemical pharmacology, 1965, Jan-01, Volume: 14

    Topics: Amino Acid Oxidoreductases; Amino Acids; Animals; Antipsychotic Agents; Chemical Phenomena; Chemistry; Chlorpromazine; D-Amino-Acid Oxidase; Flavin-Adenine Dinucleotide; Kidney; Phenothiazines; Research; Swine

1965