flavin-adenine-dinucleotide and lipoamide

flavin-adenine-dinucleotide has been researched along with lipoamide* in 4 studies

Other Studies

4 other study(ies) available for flavin-adenine-dinucleotide and lipoamide

ArticleYear
Catalysis of diaphorase reactions by Mycobacterium tuberculosis lipoamide dehydrogenase occurs at the EH4 level.
    Biochemistry, 2003, Feb-25, Volume: 42, Issue:7

    Lipoamide dehydrogenase catalyzes the reversible NAD(+)-dependent oxidation of the dihydrolipoyl cofactors that are covalently attached to the acyltransferase components of the pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and glycine reductase multienzyme complexes. It contains two redox centers: a tightly, but noncovalently, bound FAD and an enzymic disulfide, each of which can accommodate two electrons. In the two-electron-reduced enzyme (EH(2)), the disulfide is reduced while the FAD cofactor is oxidized. In the four-electron-reduced enzyme (EH(4)), both redox centers are reduced. Lipoamide dehydrogenase can also catalyze the NADH-dependent reduction of alternative electron acceptors such as 2,6-dichlorophenolindophenol, ferricyanide, quinones, and molecular oxygen (O(2)). To determine the mechanism of these "diaphorase" reactions, we generated the EH(2) and EH(4) forms of Mycobacterium tuberculosis lipoamide dehydrogenase and rapidly mixed these enzyme forms with d,l-lipoylpentanoate, 2,6-dimethyl-1,4-benzoquinone, and O(2), in a stopped-flow spectrophotometer at pH 7.5 and 4 degrees C. EH(2) reduced d,l-lipoylpentanoate >/=100 times faster than EH(4) did. Conversely, EH(4) reduced 2,6-dimethyl-1,4-benzoquinone and molecular oxygen 90 and 40 times faster than EH(2), respectively. Comparison of the rates of reduction of the above substrates by EH(2) and EH(4) with their corresponding steady-state kinetic parameters for kinetic competence leads to the conclusion that reduction of lipoyl substrates occurs with EH(2) while reduction of diaphorase substrates occurs with EH(4).

    Topics: Bacterial Proteins; Benzoquinones; Catalysis; Dihydrolipoamide Dehydrogenase; Flavin-Adenine Dinucleotide; Kinetics; Mycobacterium tuberculosis; NAD; Oxidants; Oxidation-Reduction; Oxygen; Pentanoic Acids; Recombinant Proteins; Spectrophotometry; Substrate Specificity; Thioctic Acid

2003
The lipoamide dehydrogenase from Mycobacterium tuberculosis permits the direct observation of flavin intermediates in catalysis.
    Biochemistry, 2002, Dec-10, Volume: 41, Issue:49

    Lipoamide dehydrogenase catalyses the NAD(+)-dependent oxidation of the dihydrolipoyl cofactors that are covalently attached to the acyltransferase components of the pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and glycine reductase multienzyme complexes. It contains a tightly, but noncovalently, bound FAD and a redox-active disulfide, which cycle between the oxidized and reduced forms during catalysis. The mechanism of reduction of the Mycobacterium tuberculosis lipoamide dehydrogenase by NADH and [4S-(2)H]-NADH was studied anaerobically at 4 degrees C and pH 7.5 by stopped-flow spectrophotometry. Three phases of enzyme reduction were observed. The first phase, characterized by a decrease in absorbance at 400-500 nm and an increase in absorbance at 550-700 nm, was fast (k(for) = 1260 s(-)(1), k(rev) = 590 s(-)(1)) and represents the formation of FADH(2).NAD(+), an intermediate that has never been observed before in any wild-type lipoamide dehydrogenase. A primary deuterium kinetic isotope effect [(D)(k(for) + k(rev)) approximately 4.2] was observed on this phase. The second phase, characterized by regain of the absorbance at 400-500 nm, loss of the 550-700 nm absorbance, and gain of 500-550 nm absorbance, was slower (k(obs) = 200 s(-)(1)). This phase represents the intramolecular transfer of electrons from FADH(2) to the redox-active disulfide to generate the anaerobically stable two-electron reduced enzyme, EH(2). The third phase, characterized by a decrease in absorbance at 400-550 nm, represents the formation of the four-electron reduced form of the enzyme, EH(4). The observed rate constant for this phase showed a decreasing NADH concentration dependence, and results from the slow (k(for) = 57 s(-)(1), k(rev) = 128 s(-)(1)) isomerization of EH(2) or slow release of NAD(+) before rapid NADH binding and reaction to form EH(4). The mechanism of oxidation of EH(2) by NAD(+) was also investigated under the same conditions. The 530 nm charge-transfer absorbance of EH(2) shifted to 600 nm upon NAD(+) binding in the dead time of mixing of the stopped-flow instrument and represents formation of the EH(2).NAD(+) complex. This was followed by two phases. The first phase (k(obs) = 750 s(-)(1)), characterized by a small decrease in absorbance at 435 and 458 nm, probably represents limited accumulation of FADH(2).NAD(+). The second phase was characterized by an increase in absorbance at 435 and 458 nm and a decrease in absorbance at 530 and 670 nm. Th

    Topics: Bacterial Proteins; Catalysis; Dihydrolipoamide Dehydrogenase; Electron Transport; Flavin-Adenine Dinucleotide; Models, Chemical; Mycobacterium tuberculosis; NAD; Oxidation-Reduction; Spectrophotometry; Spectrophotometry, Ultraviolet; Thermodynamics; Thioctic Acid

2002
Modulation of the oxidation-reduction potential of the flavin in lipoamide dehydrogenase from Escherichia coli by alteration of a nearby charged residue, K53R.
    Biochemistry, 1994, May-24, Volume: 33, Issue:20

    The epsilon-amino group of a lysine residue occupies a position within bonding distance of the flavin N5 and the bound NADPH pyridinium C4' in glutathione reductase, and it has been suggested that this positive charge influences the redox potential of the FAD [Pai & Schulz (1983) J. Biol. Chem. 258, 1752]. A conserved lysine residue occupies a similar position in lipoamide dehydrogenase. This residue has been replaced by an arginine in lipoamide dehydrogenase from Escherichia coli to give K53R. The spectral and redox properties of the FAD in K53R as well as the interaction of the flavin with bound NAD+ are profoundly affected by the change. K53R does not catalyze either the dihydrolipoamide-NAD+ or the NADH-lipoamide reactions except at very low concentrations of the reducing substrate. The absorbance spectrum of K53R in the visible and near-ultraviolet is little changed from that of wild-type enzyme, but in contrast, the spectrum of K53R is sensitive to pH with an apparent pKa = 7.0. Unlike the wild-type enzyme, the binding of beta-NAD+ to K53R alters the spectrum and indicates an apparent Kd = 7.0 microM at pH 7.6. The flavin fluorescence is partially quenched, and the visible and near-ultraviolet circular dichroism spectrum is changed by beta-NAD+. K53R is extensively reduced (mostly EH4) by 2 equiv of dihydrolipoamide/FAD while the wild-type enzyme is only partially reduced (mostly EH2). The rate of this reduction is lowered by approximately 3-fold relative to the wild-type enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Circular Dichroism; Dihydrolipoamide Dehydrogenase; Electrochemistry; Escherichia coli; Flavin-Adenine Dinucleotide; Kinetics; Lysine; NAD; Oxidation-Reduction; Photochemistry; Spectrometry, Fluorescence; Spectrophotometry; Thioctic Acid

1994
Three-dimensional structure of lipoamide dehydrogenase from Pseudomonas fluorescens at 2.8 A resolution. Analysis of redox and thermostability properties.
    Journal of molecular biology, 1993, Apr-20, Volume: 230, Issue:4

    The structure of Pseudomonas fluorescens lipoamide dehydrogenase, a dimeric flavoenzyme with a molecular mass of 106,000 daltons, was solved by the molecular replacement method and refined to an R-factor of 19.4% at 2.8 A resolution. The root-mean-square difference from ideal values for bonds and angles is 0.019 A and 3.8 degrees, respectively. The structure is closely related to that of the same flavoprotein from Azotobacter vinelandii. The root-mean-square difference for 932 C alpha atoms is 0.64 A, with 84% sequence identity. The residues in the active site are identical, while 89% of the interface residues are the same in the two enzymes. A few structural variations provide the basis for the differences in thermostability and redox properties between the two homologous proteins. Particularly, in the A. vinelandii molecule a threonine to alanine (T452A) mutation leaves a buried carbonyl oxygen, located at the subunit interface and in proximity of the flavin ring, unpaired to any H-bond donor, probably providing an explanation for the lower stability of the A. vinelandii enzyme with respect to the P. fluorescens enzyme. Six surface loops, which previously could not be accurately positioned in the A. vinelandii structure, are well defined in P. fluorescens lipoamide dehydrogenase. On the basis of the P. fluorescens structure, the six loops could be correctly defined also in the A. vinelandii enzyme. This is an unusual case where similar refinement methodologies applied to two crystal forms of closely related proteins led to electron density maps of substantially different quality. The correct definition of these surface residues is likely to be an essential step for revealing the structural basis of the interactions between lipoamide dehydrogenase and the other members of the pyruvate dehydrogenase multienzyme complex.

    Topics: Amino Acid Sequence; Azotobacter vinelandii; Binding Sites; Catalysis; Crystallization; Dihydrolipoamide Dehydrogenase; Electronic Data Processing; Flavin-Adenine Dinucleotide; Hydrogen Bonding; Models, Molecular; Molecular Sequence Data; Mutation; NAD; Oxidation-Reduction; Protein Conformation; Protein Denaturation; Pseudomonas fluorescens; Recombinant Proteins; Sequence Homology, Amino Acid; Thioctic Acid; X-Ray Diffraction

1993